24,446 research outputs found

    Polarization entanglement visibility of photon pairs emitted by a quantum dot embedded in a microcavity

    Full text link
    We study the photon emission from a quantum dot embedded in a microcavity. Incoherent pumping of its excitons and biexciton provokes the emission of leaky and cavity modes. By solving a master equation we obtain the correlation functions required to compute the spectrum and the relative efficiency among the emission of pairs and single photons. A quantum regime appears for low pumping and large rate of emission. By means of a post-selection process, a two beams experiment with different linear polarizations could be performed producing a large polarization entanglement visibility precisely in the quantum regime.Comment: 13 pages and 6 figure

    Elementary Excitations of Heisenberg Ferrimagnetic Spin Chains

    Full text link
    We numerically investigate elementary excitations of the Heisenberg alternating-spin chains with two kinds of spins 1 and 1/2 antiferromagnetically coupled to each other. Employing a recently developed efficient Monte Carlo technique as well as an exact diagonalization method, we verify the spin-wave argument that the model exhibits two distinct excitations from the ground state which are gapless and gapped. The gapless branch shows a quadratic dispersion in the small-momentum region, which is of ferromagnetic type. With the intention of elucidating the physical mechanism of both excitations, we make a perturbation approach from the decoupled-dimer limit. The gapless branch is directly related to spin 1's, while the gapped branch originates from cooperation of the two kinds of spins.Comment: 7 pages, 7 Postscript figures, RevTe

    Competing Ground States of the New Class of Halogen-Bridged Metal Complexes

    Full text link
    Based on a symmetry argument, we study the ground-state properties of halogen-bridged binuclear metal chain complexes. We systematically derive commensurate density-wave solutions from a relevant two-band Peierls-Hubbard model and numerically draw the the ground-state phase diagram as a function of electron-electron correlations, electron-phonon interactions, and doping concentration within the Hartree-Fock approximation. The competition between two types of charge-density-wave states, which has recently been reported experimentally, is indeed demonstrated.Comment: 4 pages, 5 figures embedded, to appear in J. Phys. Soc. Jp

    Universal relationship between crystallinity and irreversibility field of MgB2

    Full text link
    The relationship between irreversibility field, Hirr, and crystallinity of MgB2 bulks including carbon substituted samples was studied. The Hirr was found to increase with an increase of FWHM of MgB2 (110) peak, which corresponds to distortion of honeycomb boron sheet, and their universal correlation was discovered even including carbon substituted samples. Excellent Jc characteristics under high magnetic fields were observed in samples with large FWHM of (110) due to the enhanced intraband scattering and strengthened grain boundary flux pinning. The relationship between crystallinity and Hirr can explain the large variation of Hirr for MgB2 bulks, tapes, single crystals and thin films.Comment: 3 pages, 4 figures, to be published in Appl. Phys. Lett. (in press

    Dynamics of the excitations of a quantum dot in a microcavity

    Full text link
    We study the dynamics of a quantum dot embedded in a three-dimensional microcavity in the strong coupling regime in which the quantum dot exciton has an energy close to the frequency of a confined cavity mode. Under the continuous pumping of the system, confined electron and hole can recombine either by spontaneous emission through a leaky mode or by stimulated emission of a cavity mode that can escape from the cavity. The numerical integration of a master equation including all these effects gives the dynamics of the density matrix. By using the quantum regression theorem, we compute the first and second order coherence functions required to calculate the photon statistics and the spectrum of the emitted light. Our main result is the determination of a range of parameters in which a state of cavity modes with poissonian or sub-poissonian (non-classical) statistics can be built up within the microcavity. Depending on the relative values of pumping and rate of stimulated emission, either one or two peaks close to the excitation energy of the dot and/or to the natural frequency of the cavity are observed in the emission spectrum. The physics behind these results is discussed

    Ferromagnetism and large negative magnetoresistance in Pb doped Bi-Sr-Co-O misfit-layer compound

    Full text link
    Ferromagnetism and accompanying large negative magnetoresistance in Pb-substituted Bi-Sr-Co-O misfit-layer compound are investigated in detail. Recent structural analysis of (Bi,Pb)2{}_2Sr3{}_{3}Co2{}_2O9{}_9, which has been believed to be a Co analogue of Bi2{}_2Sr2{}_2CaCu2{}_2O8+δ{}_{8+\delta}, revealed that it has a more complex structure including a CoO2{}_2 hexagonal layer [T. Yamamoto {\it et al.}, Jpn. J. Appl. Phys. {\bf 39} (2000) L747]. Pb substitution for Bi not only introduces holes into the conducting CoO2{}_2 layers but also creates a certain amount of localized spins. Ferromagnetic transition appears at TT = 3.2 K with small spontaneous magnetization along the cc axis, and around the transition temperature large and anisotropic negative magnetoresistance was observed. This compound is the first example which shows ferromagnetic long-range order in a two-dimensional metallic hexagnonal CoO2{}_2 layer.Comment: 8 pages including eps figures. To be published in J. Phys. Soc. Jp

    Dynamics of Quasi-ordered Structure in a Regio-regulated pi-Conjugated Polymer:Poly(4-methylthiazole-2,5-diyl)

    Full text link
    Dynamics of regio-regulated Poly(4-methylthiazole-2,5-diyl) [HH-P4MeTz] was inves tigated by solid-state 1H, 2D, 13C NMR spectroscopies, and differential scanning calorimetry(DSC) measurements. DSC, 2D quadrupolar echo NMR, 13C cross-polarization and magic-angle spinning(CPMAS) NMR, and 2D spin-echo(2DSE) CPMAS NMR spectroscopy suggest existence of a quasi-ordered phase in which backbone twists take place with weakened pi-stackings. Two-dimensional exchange 2D NMR(2DEX) detected slow dynamics with a rate of an order of 10^2Hz for the CD_3 group in d_3-HH-P4MeTz at 288K. The frequency dependence of proton longitudinal relaxation rate at 288K shows a omega^-1/2 dependence, which is due to the one-dimensional diffusion-like motion of backbone conformational modulation waves. The diffusion rate was estimated as 3+/-2 GHz, which was approximately 10^7 times larger than that estimated by 2DEX NMR measurements. These results suggest that there exists anomalous dispersion of modulation waves in HH-P4MeTz. The one-dimensional group velocity of the wave packet is responsible for the behavior of proton longitudinal relaxation time. On the other hand, the 2DEX NMR is sensitive to phase velocity of the nutation of methyl groups that is associated with backbone twists. From proton T_1 and T_2 measurements, the activation energy was estimated as 2.9 and 3.4 kcal/mol, respectively. These were in agreement with 3.0 kcal/mol determined by Moller-Plesset(MP2) molecular orbital(MO) calculation. We also performed chemical shielding calculation of the methyl-carbon in order to understand chemical shift tensor behavior, leading to the fact that a quasi-ordered phase coexist with the crystalline phase.Comment: 14 pages, 11 figures, to appear in Phys.Rev.

    Nuclear Magnetic Relaxation in the Haldane-Gap Antiferromagnet Ni(C_2_H_8_N_2_)_2_NO_2_(ClO_4_)

    Full text link
    A new theory is proposed to interpret nuclear spin-lattice relaxation-time (T_1_) measurements on the spin-1 quasi-one-dimensional Heisenberg antiferromagnet Ni(C_2_H_8_N_2_)_2_NO_2_(ClO_4_) (NENP). While Sagi and Affleck pioneeringly discussed this subject in terms of field-theoretical languages, there is no theoretical attempt yet to explicitly simulate the novel observations of 1/T_1_ reported by Fujiwara et al.. By means of modified spin waves, we solve the minimum of 1/T_1_ as a function of an applied field, pending for the past decade.Comment: to be published in J. Phys. Soc. Jpn. 73, No. 4 (2004

    Cancellation of UV Divergences in the N=4 SUSY Nonlinear Sigma Model in Three Dimensions

    Full text link
    We study the UV properties of the three-dimensional N=4{\cal N}=4 SUSY nonlinear sigma model whose target space is T(CPN1)T^*(CP^{N-1}) (the cotangent bundle of CPN1CP^{N-1}) to higher orders in the 1/N expansion. We calculate the β\beta-function to next-to-leading order and verify that it has no quantum corrections at leading and next-to-leading orders.Comment: 10 pages, 2 figures. references adde

    Effect of interfacial strain on spin injection and spin polarization of Co2CrAl/NaNbO3/Co2CrAl magnetic tunneling junction

    Full text link
    First-principles calculations were carried out to investigate interfacial strain effects on spin injection and spin polarization of a magnetic tunnel junction consisting of half-metallic full-Heusler alloy Co2CrAl and ferroelectric perovskite NaNbO3. Spin-dependent coherent tunneling was calculated within the framework of non-equilibrium Green's function technique. Both spin polarization and tunnel magnetoresistance (TMR) are affected by the interfacial strain but their responses to compressive and tensile strains are different. Spin polarization across the interface is fully preserved under a compressive strain due to stronger coupling between interfacial atoms, whereas a tensile strain significantly enhances interface states and lead to substantial drops in spin polarization and TMR
    corecore