1,345 research outputs found

    Analysis of the Scanning Tunneling Microscopy Images of the Charge Density Wave Phase in Quasi-one-dimensional Rb0.3MoO3

    Full text link
    The experimental STM images for the CDW phase of the blue bronze RbMoO3 have been successfully explained on the basis of first-principles DFT calculations. Although the density of states near the Fermi level strongly concentrates in two of the three types of Mo atoms Mo-II and Mo-III, the STM measurement mostly probes the contribution of the uppermost O atoms of the surface, associated with the Mo-IO6 octahedra. In addition, it is found that the surface concentration of Rb atoms plays a key role in determining the surface nesting vector and hence the periodicity of the CDW modulation. Significant experimental inhomogeneities of the b* surface component of the wavevector of the modulation, probed by STM, are reported. The calculated changes in the surface nesting vector are consistent with the observed experimental inhomogeneities.Comment: 4 pages 5 Figure

    Theoretical Aspects of Charge Correlations in θ\theta-(BEDT-TTF)2X_2X

    Full text link
    A review is given on the theoretical studies of charge correlations in θ\theta-(BEDT-TTF)2X_2X. Various studies show that within a purely electronic model on the θ\theta-type lattice with the on-site UU and the nearest neighbor VpV_p and VcV_c interactions, the diagonal stripe, c-axis three-fold, and the vertical stripe charge correlations are favored in the regime Vp<VcV_p< V_c, VpVcV_p\sim V_c, and Vp>VcV_p> V_c, respectively. In the realistic parameter regime of VpVcV_p\sim V_c, there is a competition between c-axis three fold state and the diagonal stripe state. Since these are different from the experimentally observed a-axis three fold and the horizontal stripe charge correlations, additional effects have to be included in order to understand the experiments. The electron-lattice coupling, which tends to distort the lattice into the θd\theta_d-type, is found to favor the horizontal stripe state, suggesting that the occurrence of this stripe ordering in the actual materials may not be of purely electronic origin. On the other hand, distant electron-electron interactions have to be considered in order to understand the a-axis three fold correlation, whose wave vector is close to the nesting vector of the Fermi surface. These studies seem to suggest that the minimal model to understand the charge correlation in θ\theta-(BEDT-TTF)2X_2X may be more complicated than expected. Future problems regarding the competition between different types of charge correlations are discussed.Comment: 22 pages, 15 figures, to be published in Sci. Technol. Adv. Mater., Special Edition on Organic Conductor

    Collective Spin-Density-Wave Response Perpendicular to the Chains of the Quasi One-Dimensional Conductor (TMTSF)2PF6

    Full text link
    Microwave experiments along all three directions of the spin-density-wave model compound (TMTSF)2_2PF6_6 reveal that the pinned mode resonance is present along the aa and bb^{\prime} axes. The collective transport is considered to be the fingerprint of the condensate. In contrast to common quasi one-dimensional models, the density wave also slides in the perpendicular bb^{\prime} direction. The collective response is absent along the least conducting cc^* direction.Comment: 3 pages, 4 figure

    Evidence for Lattice Effects at the Charge-Ordering Transition in (TMTTF)2_2X

    Full text link
    High-resolution thermal expansion measurements have been performed for exploring the mysterious "structureless transition" in (TMTTF)2_{2}X (X = PF6_{6} and AsF6_{6}), where charge ordering at TCOT_{CO} coincides with the onset of ferroelectric order. Particularly distinct lattice effects are found at TCOT_{CO} in the uniaxial expansivity along the interstack c*\textbf{\textit{c*}}-direction. We propose a scheme involving a charge modulation along the TMTTF stacks and its coupling to displacements of the counteranions X^{-}. These anion shifts, which lift the inversion symmetry enabling ferroelectric order to develop, determine the 3D charge pattern without ambiguity. Evidence is found for another anomaly for both materials at TintT_{int} \simeq 0.6 \cdot TCOT_{CO} indicative of a phase transition related to the charge ordering

    A New Scenario on the Metal-Insulator Transition in VO2

    Full text link
    The metal-insulator transition in VO2 was investigated using the three-band Hubbard model, in which the degeneracy of the 3d orbitals, the on-site Coulomb and exchange interactions, and the effects of lattice distortion were considered. A new scenario on the phase transition is proposed, where the increase in energy level separation among the t_2g orbitals caused by the lattice distortion triggers an abrupt change in the electronic configuration in doubly occupied sites from an S=1 Hund's coupling state to a spin S=0 state with much larger energy, and this strongly suppresses the charge fluctuation. Although the material is expected to be a Mott-Hubbard insulator in the insulating phase, the metal-to-insulator transition is not caused by an increase in relative strength of the Coulomb interaction against the electron hopping as in the usual Mott transition, but by the level splitting among the t_2g orbitals against the on-site exchange interaction. The metal-insulator transition in Ti2O3 can also be explained by the same scenario. Such a large change in the 3d orbital occupation at the phase transition can be detected by linear dichroic V 2p x-ray absorption measurements.Comment: 5 pages, 5 figures, to be published in J. Phys. Soc. Jpn. Vol. 72 No. 1

    Effective band-structure in the insulating phase versus strong dynamical correlations in metallic VO2

    Full text link
    Using a general analytical continuation scheme for cluster dynamical mean field calculations, we analyze real-frequency self-energies, momentum-resolved spectral functions, and one-particle excitations of the metallic and insulating phases of VO2. While for the former dynamical correlations and lifetime effects prevent a description in terms of quasi-particles, the excitations of the latter allow for an effective band-structure. We construct an orbital-dependent, but static one-particle potential that reproduces the full many-body spectrum. Yet, the ground state is well beyond a static one-particle description. The emerging picture gives a non-trivial answer to the decade-old question of the nature of the insulator, which we characterize as a ``many-body Peierls'' state.Comment: 5 pages, 4 color figure

    Dynamical singlets and correlation-assisted Peierls transition in VO2

    Full text link
    A theory of the metal-insulator transition in vanadium dioxide from the high-temperature rutile to the low- temperature monoclinic phase is proposed on the basis of cluster dynamical mean field theory, in conjunction with the density functional scheme. The interplay of strong electronic Coulomb interactions and structural distortions, in particular the dimerization of vanadium atoms in the low temperature phase, plays a crucial role. We find that VO2 is not a conventional Mott insulator, but that the formation of dynamical V-V singlet pairs due to strong Coulomb correlations is necessary to trigger the opening of a Peierls gap.Comment: 5 page

    Resonant inelastic x-ray scattering probes the electron-phonon coupling in the spin-liquid kappa-(BEDT-TTF)2Cu2(CN)3

    Full text link
    Resonant inelastic x-ray scattering at the N K edge reveals clearly resolved harmonics of the anion plane vibrations in the kappa-(BEDT-TTF)2Cu2(CN)3 spin-liquid insulator. Tuning the incoming light energy at the K edge of two distinct N sites permits to excite different sets of phonon modes. Cyanide CN stretching mode is selected at the edge of the ordered N sites which are more strongly connected to the BEDT-TTF molecules, while positionally disordered N sites show multi-mode excitation. Combining measurements with calculations on an anion plane cluster permits to estimate the sitedependent electron-phonon coupling of the modes related to nitrogen excitation

    Effect of Inter-Site Repulsions on Magnetic Susceptibility of One-Dimensional Electron Systems at Quarter-Filling

    Full text link
    The temperature dependence of the magnetic susceptibility, \chi (T), is investigated for one-dimensional interacting electron systems at quarter-filling within the Kadanoff-Wilson renormalization-group method. The forward scattering on the same branch (the g_4-process) is examined together with the backward (g_1) and forward (g_2) scattering amplitudes on opposite branches. In connection with lattice models, we show that \chi (T) is strongly enhanced by the nearest-neighbor interaction, an enhancement that surpasses one of the next-nearest-neighbor interaction. A connection between our predictions for \chi (T) and experimental results for \chi (T) in quasi-one-dimensional organic conductors is presented.Comment: 4 pages, 4 figures, to be published in Journal of the Physical Society of Japan, vol. 74, No. 1
    corecore