1,345 research outputs found
Analysis of the Scanning Tunneling Microscopy Images of the Charge Density Wave Phase in Quasi-one-dimensional Rb0.3MoO3
The experimental STM images for the CDW phase of the blue bronze RbMoO3 have
been successfully explained on the basis of first-principles DFT calculations.
Although the density of states near the Fermi level strongly concentrates in
two of the three types of Mo atoms Mo-II and Mo-III, the STM measurement mostly
probes the contribution of the uppermost O atoms of the surface, associated
with the Mo-IO6 octahedra. In addition, it is found that the surface
concentration of Rb atoms plays a key role in determining the surface nesting
vector and hence the periodicity of the CDW modulation. Significant
experimental inhomogeneities of the b* surface component of the wavevector of
the modulation, probed by STM, are reported. The calculated changes in the
surface nesting vector are consistent with the observed experimental
inhomogeneities.Comment: 4 pages 5 Figure
Theoretical Aspects of Charge Correlations in -(BEDT-TTF)
A review is given on the theoretical studies of charge correlations in
-(BEDT-TTF). Various studies show that within a purely electronic
model on the -type lattice with the on-site and the nearest
neighbor and interactions, the diagonal stripe, c-axis three-fold,
and the vertical stripe charge correlations are favored in the regime , , and , respectively. In the realistic parameter
regime of , there is a competition between c-axis three fold state
and the diagonal stripe state. Since these are different from the
experimentally observed a-axis three fold and the horizontal stripe charge
correlations, additional effects have to be included in order to understand the
experiments. The electron-lattice coupling, which tends to distort the lattice
into the -type, is found to favor the horizontal stripe state,
suggesting that the occurrence of this stripe ordering in the actual materials
may not be of purely electronic origin. On the other hand, distant
electron-electron interactions have to be considered in order to understand the
a-axis three fold correlation, whose wave vector is close to the nesting vector
of the Fermi surface. These studies seem to suggest that the minimal model to
understand the charge correlation in -(BEDT-TTF) may be more
complicated than expected. Future problems regarding the competition between
different types of charge correlations are discussed.Comment: 22 pages, 15 figures, to be published in Sci. Technol. Adv. Mater.,
Special Edition on Organic Conductor
Collective Spin-Density-Wave Response Perpendicular to the Chains of the Quasi One-Dimensional Conductor (TMTSF)2PF6
Microwave experiments along all three directions of the spin-density-wave
model compound (TMTSF)PF reveal that the pinned mode resonance is
present along the and axes. The collective transport is
considered to be the fingerprint of the condensate. In contrast to common quasi
one-dimensional models, the density wave also slides in the perpendicular
direction. The collective response is absent along the least
conducting direction.Comment: 3 pages, 4 figure
Evidence for Lattice Effects at the Charge-Ordering Transition in (TMTTF)X
High-resolution thermal expansion measurements have been performed for
exploring the mysterious "structureless transition" in (TMTTF)X (X =
PF and AsF), where charge ordering at coincides with the
onset of ferroelectric order. Particularly distinct lattice effects are found
at in the uniaxial expansivity along the interstack
-direction. We propose a scheme involving a charge
modulation along the TMTTF stacks and its coupling to displacements of the
counteranions X. These anion shifts, which lift the inversion symmetry
enabling ferroelectric order to develop, determine the 3D charge pattern
without ambiguity. Evidence is found for another anomaly for both materials at
0.6 indicative of a phase transition
related to the charge ordering
A New Scenario on the Metal-Insulator Transition in VO2
The metal-insulator transition in VO2 was investigated using the three-band
Hubbard model, in which the degeneracy of the 3d orbitals, the on-site Coulomb
and exchange interactions, and the effects of lattice distortion were
considered. A new scenario on the phase transition is proposed, where the
increase in energy level separation among the t_2g orbitals caused by the
lattice distortion triggers an abrupt change in the electronic configuration in
doubly occupied sites from an S=1 Hund's coupling state to a spin S=0 state
with much larger energy, and this strongly suppresses the charge fluctuation.
Although the material is expected to be a Mott-Hubbard insulator in the
insulating phase, the metal-to-insulator transition is not caused by an
increase in relative strength of the Coulomb interaction against the electron
hopping as in the usual Mott transition, but by the level splitting among the
t_2g orbitals against the on-site exchange interaction. The metal-insulator
transition in Ti2O3 can also be explained by the same scenario. Such a large
change in the 3d orbital occupation at the phase transition can be detected by
linear dichroic V 2p x-ray absorption measurements.Comment: 5 pages, 5 figures, to be published in J. Phys. Soc. Jpn. Vol. 72 No.
1
Effective band-structure in the insulating phase versus strong dynamical correlations in metallic VO2
Using a general analytical continuation scheme for cluster dynamical mean
field calculations, we analyze real-frequency self-energies, momentum-resolved
spectral functions, and one-particle excitations of the metallic and insulating
phases of VO2. While for the former dynamical correlations and lifetime effects
prevent a description in terms of quasi-particles, the excitations of the
latter allow for an effective band-structure. We construct an
orbital-dependent, but static one-particle potential that reproduces the full
many-body spectrum. Yet, the ground state is well beyond a static one-particle
description. The emerging picture gives a non-trivial answer to the decade-old
question of the nature of the insulator, which we characterize as a ``many-body
Peierls'' state.Comment: 5 pages, 4 color figure
Dynamical singlets and correlation-assisted Peierls transition in VO2
A theory of the metal-insulator transition in vanadium dioxide from the
high-temperature rutile to the low- temperature monoclinic phase is proposed on
the basis of cluster dynamical mean field theory, in conjunction with the
density functional scheme. The interplay of strong electronic Coulomb
interactions and structural distortions, in particular the dimerization of
vanadium atoms in the low temperature phase, plays a crucial role. We find that
VO2 is not a conventional Mott insulator, but that the formation of dynamical
V-V singlet pairs due to strong Coulomb correlations is necessary to trigger
the opening of a Peierls gap.Comment: 5 page
Resonant inelastic x-ray scattering probes the electron-phonon coupling in the spin-liquid kappa-(BEDT-TTF)2Cu2(CN)3
Resonant inelastic x-ray scattering at the N K edge reveals clearly resolved
harmonics of the anion plane vibrations in the kappa-(BEDT-TTF)2Cu2(CN)3
spin-liquid insulator. Tuning the incoming light energy at the K edge of two
distinct N sites permits to excite different sets of phonon modes. Cyanide CN
stretching mode is selected at the edge of the ordered N sites which are more
strongly connected to the BEDT-TTF molecules, while positionally disordered N
sites show multi-mode excitation. Combining measurements with calculations on
an anion plane cluster permits to estimate the sitedependent electron-phonon
coupling of the modes related to nitrogen excitation
Effect of Inter-Site Repulsions on Magnetic Susceptibility of One-Dimensional Electron Systems at Quarter-Filling
The temperature dependence of the magnetic susceptibility, \chi (T), is
investigated for one-dimensional interacting electron systems at
quarter-filling within the Kadanoff-Wilson renormalization-group method.
The forward scattering on the same branch (the g_4-process) is examined
together with the backward (g_1) and forward (g_2) scattering amplitudes on
opposite branches.
In connection with lattice models, we show that \chi (T) is strongly enhanced
by the nearest-neighbor interaction, an enhancement that surpasses one of the
next-nearest-neighbor interaction.
A connection between our predictions for \chi (T) and experimental results
for \chi (T) in quasi-one-dimensional organic conductors is presented.Comment: 4 pages, 4 figures, to be published in Journal of the Physical
Society of Japan, vol. 74, No. 1
- …
