24 research outputs found

    Cholesterol and Lipoprotein Dynamics in a Hibernating Mammal

    Get PDF
    Hibernating mammals cease feeding during the winter and rely primarily on stored lipids to fuel alternating periods of torpor and arousal. How hibernators manage large fluxes of lipids and sterols over the annual hibernation cycle is poorly understood. The aim of this study was to investigate lipid and cholesterol transport and storage in ground squirrels studied in spring, summer, and several hibernation states. Cholesterol levels in total plasma, HDL and LDL particles were elevated in hibernators compared with spring or summer squirrels. Hibernation increased plasma apolipoprotein A-I expression and HDL particle size. Expression of cholesterol 7 alpha-hydroxylase was 13-fold lower in hibernators than in active season squirrels. Plasma triglycerides were reduced by fasting in spring but not summer squirrels. In hibernators plasma β-hydroxybutyrate was elevated during torpor whereas triglycerides were low relative to normothermic states. We conclude that the switch to a lipid-based metabolism during winter, coupled with reduced capacity to excrete cholesterol creates a closed system in which efficient use of lipoproteins is essential for survival

    Diosgenin stimulation of fecal cholesterol excretion in mice is not NPC1L1 dependent

    No full text
    Diosgenin exists in some food supplements and herbal medicines and lowers plasma cholesterol by increasing fecal cholesterol excretion. It is believed that diosgenin promotes fecal cholesterol excretion by stimulating biliary cholesterol secretion and decreasing intestinal cholesterol absorption. Niemann-Pick C1-like 1 (NPC1L1) was recently identified as an essential protein for intestinal cholesterol absorption. To determine the relative contribution of biliary secretion and intestinal absorption of cholesterol in diosgenin-stimulated fecal cholesterol excretion, wild-type (WT) and NPC1L1-knockout (L1KO) mice were fed a diet with or without 1% diosgenin. Fecal cholesterol excretion (μmol/day/100 g body weight) increased in diosgenin-fed WT and L1KO mice from 4.2 to 52 and from 63 to 140, respectively. Surprisingly, this increase in diosgenin-treated versus untreated L1KO mice (77) was even greater than that seen in diosgenin-treated versus untreated WT mice (47.8). Additionally, WT and L1KO mice fed the diosgenin diet had similar increases in biliary cholesterol concentration, despite unaltered hepatic expression of the hepatobiliary cholesterol transporter, ATP binding cassette transporters G5 and G8. Facilitated cholesterol excretion in diosgenin-treated WT and L1KO mice was associated with decreased hepatic and plasma cholesterol and increased liver expression of cholesterol synthetic genes. In contrast, diosgenin had no effect on the intestinal expression of NPC1L1 and cholesterol synthetic genes. In an in vitro assay, diosgenin was unable to block NPC1L1-dependent cholesterol uptake. In conclusion, diosgenin stimulation of fecal cholesterol excretion is independent of NPC1L1-mediated cholesterol absorption

    Carboxylic acid drug-induced DNA nicking in HEK293 cells expressing human UDP-glucuronosyltransferases: Role of acyl glucuronide metabolites and glycation pathways

    No full text
    Copyright © 2007 American Chemical SocietyGlucuronidation of carboxylic-acid-containing drugs can yield reactive acyl (ester-linked) glucuronide metabolites that are able to modify endogenous macromolecules. Previous research has shown that several carboxylic acid drugs are genotoxic in isolated mouse hepatocytes, and that DNA damage is prevented by the glucuronidation inhibitor, borneol. Whether these species induce comparable genetic damage in human cells is unknown. In this study, we investigated the mechanisms of clofibric acid-induced genotoxicity in HEK293 cells expressing the human UDP-glucuronosyltransferases UGT1A3, UGT1A9, or UGT2B7, and screened three other carboxylic acid drugs for UGT-dependent genotoxicity. DNA damage was detected using the alkaline version of the comet assay. HEK293 cells were incubated for 18 h with vehicle (2.5 mM NaOH), 0.1–2.5 mM clofibric acid or 0.1–1.0 mM benoxaprofen, bezafibrate, or probenecid. To identify mechanisms underlying any observed genotoxicity, we treated UGT2B7 transfectants with 10 mM aminoguanidine, 1 mM borneol, or 2 mM desferrioxamine mesylate prior to co-incubation with 1 mM clofibric acid for 18 h. Compared to vehicle, clofibric acid, benoxaprofen, and probenecid produced significant DNA damage in all three UGT-transfected HEK293 cell lines, detectable from the lowest concentration tested. Bezafibrate caused DNA damage only at higher concentrations (1.0 mM) in UGT2B7- and UGT1A9-, but not UGT1A3-transfected cells. No drug-induced DNA damage was detected in untransfected cells, consistent with the limited glucuronidation capacity of these cells. The glycation/glycoxidation inhibitor aminoguanidine and the glucuronidation inhibitor borneol significantly decreased clofibric-acid-mediated DNA damage in UGT2B7 transfected cells by 73.5 and 94.8%, respectively. The inhibitor of transition -metal-catalyzed oxidation, desferrioxamine mesylate, had no significant effect on DNA damage. This study demonstrates the substrate-dependent role of human UGTs in the bioactivation of carboxylic acid drugs to genotoxic acyl glucuronide metabolites that are able to damage nuclear DNA via glycation and/or glycoxidation mechanisms.Hamish T. Southwood, Yvette C. DeGraaf, Peter I. Mackenzie, John O. Miners, Philip C. Burcham and Benedetta C. Sallusti
    corecore