26,809 research outputs found

    Chemical signatures of planets: beyond solar-twins

    Get PDF
    Elemental abundance studies of solar twin stars suggest that the solar chemical composition contains signatures of the formation of terrestrial planets in the solar system, namely small but significant depletions of the refractory elements. To test this hypothesis, we study stars which, compared to solar twins, have less massive convective envelopes (therefore increasing the amplitude of the predicted effect) or are, arguably, more likely to host planets (thus increasing the frequency of signature detections). We measure relative atmospheric parameters and elemental abundances of a late-F type dwarf sample (52 stars) and a sample of metal-rich solar analogs (59 stars). We detect refractory-element depletions with amplitudes up to about 0.15 dex. The distribution of depletion amplitudes for stars known to host gas giant planets is not different from that of the rest of stars. The maximum amplitude of depletion increases with effective temperature from 5650 K to 5950 K, while it appears to be constant for warmer stars (up to 6300 K). The depletions observed in solar twin stars have a maximum amplitude that is very similar to that seen here for both of our samples. Gas giant planet formation alone cannot explain the observed distributions of refractory-element depletions, leaving the formation of rocky material as a more likely explanation of our observations. More rocky material is necessary to explain the data of solar twins than metal-rich stars, and less for warm stars. However, the sizes of the stars' convective envelopes at the time of planet formation could be regulating these amplitudes. Our results could be explained if disk lifetimes were shorter in more massive stars, as independent observations indeed seem to suggest.Comment: Astronomy and Astrophysics, in press. Full tables available in the source downloa

    Stellar Chemical Abundances: In Pursuit of the Highest Achievable Precision

    Get PDF
    The achievable level of precision on photospheric abundances of stars is a major limiting factor on investigations of exoplanet host star characteristics, the chemical histories of star clusters, and the evolution of the Milky Way and other galaxies. While model-induced errors can be minimized through the differential analysis of spectrally similar stars, the maximum achievable precision of this technique has been debated. As a test, we derive differential abundances of 19 elements from high-quality asteroid-reflected solar spectra taken using a variety of instruments and conditions. We treat the solar spectra as being from unknown stars and use the resulting differential abundances, which are expected to be zero, as a diagnostic of the error in our measurements. Our results indicate that the relative resolution of the target and reference spectra is a major consideration, with use of different instruments to obtain the two spectra leading to errors up to 0.04 dex. Use of the same instrument at different epochs for the two spectra has a much smaller effect (~0.007 dex). The asteroid used to obtain the solar standard also has a negligible effect (~0.006 dex). Assuming that systematic errors from the stellar model atmospheres have been minimized, as in the case of solar twins, we confirm that differential chemical abundances can be obtained at sub-0.01 dex precision with due care in the observations, data reduction and abundance analysis.Comment: Accepted for publication in ApJ; 13 pages, 6 figures, 7 table

    Search for the Higgs Boson H20H_2^0 at LHC in 3-3-1 Model

    Full text link
    We present an analysis of production and signature of neutral Higgs boson (H20H_{2}^{0}) on the version of the 3-3-1 model containing heavy leptons at the Large Hadron Collider. We studied the possibility to identify it using the respective branching ratios. Cross section are given for the collider energy, s=\sqrt{s} = 14 TeV. Event rates and significances are discussed for two possible values of integrated luminosity, 300 fb−1^{-1} and 3000 fb−1^{-1}.Comment: 17 pages 7 figures. arXiv admin note: substantial text overlap with arXiv:1205.404

    Quantum Backflow States from Eigenstates of the Regularized Current Operator

    Full text link
    We present an exhaustive class of states with quantum backflow -- the phenomenon in which a state consisting entirely of positive momenta may have negative current and the probability flows in the opposite direction to the momentum. They are characterized by a general function of momenta subject to very weak conditions. Such a family of states is of interest in the light of a recent experimental proposal to measure backflow. We find one particularly simple state which has surprisingly large backflow -- about 41 percent of the lower bound on flux derived by Bracken and Melloy. We study the eigenstates of a regularized current operator and we show how some of these states, in a certain limit, lead to our class of backflow states. This limit also clarifies the correspondence between the spectrum of the regularized current operator, which has just two non-zero eigenvalues in our chosen regularization, and the usual current operator.Comment: 16 pages, 2 figure
    • …
    corecore