139,887 research outputs found
Galaxy Ecosystems: gas contents, inflows and outflows
We use a set of observational data for galaxy cold gas mass fraction and gas
phase metallicity to constrain the content, inflow and outflow of gas in
central galaxies hosted by halos with masses between to
. The gas contents in high redshift galaxies are obtained by
combining the empirical star formation histories of Lu et al. (2014) and star
formation models that relate star formation rate with the cold gas mass in
galaxies. We find that the total baryon mass in low-mass galaxies is always
much less than the universal baryon mass fraction since , regardless of
star formation model adopted. The data for the evolution of the gas phase
metallicity require net metal outflow at , and the metal loading
factor is constrained to be about , or about of the metal yield.
Based on the assumption that galactic outflow is more enriched in metal than
both the interstellar medium and the material ejected at earlier epochs, we are
able to put stringent constraints on the upper limits for both the net
accretion rate and the net mass outflow rate. The upper limits strongly suggest
that the evolution of the gas phase metallicity and gas mass fraction for
low-mass galaxies at is not compatible with strong outflow. We
speculate that the low star formation efficiency of low-mass galaxies is owing
to some preventative processes that prevent gas from accreting into galaxies in
the first place.Comment: 15 pages, 10 figures, submitted to MNRA
Quantum theory of the real and the complexified projective line
Quantum deformations of sets of points of the real and the complexified
projective line are constructed. These deformations depend on the deformation
parameter q and certain further parameters \lambda_{ij}. The deformations for
which the subspace of polynomials of degree three has a basis of ordered
monomials are selected. We show that the corresponding algebras of three points
have "polynomiality". Invariant elements which turn out to be cross ratios in
the classical limit are defined. For the special case |\lambda_{ij}| = 1 a
quantum cross ratio with properties similar to the classical case is presented.
As an application a quantum version of the real Euclidean distance is given.Comment: 25 page
A Note on N=2 Superstrings
In this note we investigate the generalised critical superstrings in
spacetime signature. We calculate the four-point functions for the
tachyon operators of these theories. In contrast to the usual superstring
in spacetime, the four-point functions do not vanish. The exchanged
particles of the four-point function are included in the physical spectrum of
the corresponding theory and have vanishing fermion charge.Comment: 8 pages, CTP TAMU-57/92, EFI-92-3
S^1-wrapped D3-branes on Conifolds
We construct a D3-brane wrapped on S^1, which is fibred over the resolved
conifold as its transverse space. Whereas a fractional D3-brane on the resolved
conifold is not supersymmetric and has a naked singularity, our solution is
supersymmetric and regular everywhere. We also consider an -wrapped
D3-brane on the resolved cone over T^{1,1}/Z_2, as well as on the deformed
conifold. In the former case, we obtain a regular supergravity dual to a
certain four-dimensional field theory whose Lorentz and conformal symmetries
are broken in the IR region and restored in the UV limit.Comment: Latex, 14 pages, minor correction
A Construction of Killing Spinors on S^n
We derive simple general expressions for the explicit Killing spinors on the
n-sphere, for arbitrary n. Using these results we also construct the Killing
spinors on various AdS x Sphere supergravity backgrounds, including AdS_5 x
S^5$, AdS_4 x S^7 and AdS_7 x S^4. In addition, we extend previous results to
obtain the Killing spinors on the hyperbolic spaces H^n.Comment: 11 pages, LaTe
Bayesian inferences of galaxy formation from the K-band luminosity and HI mass functions of galaxies: constraining star formation and feedback
We infer mechanisms of galaxy formation for a broad family of semi-analytic
models (SAMs) constrained by the K-band luminosity function and HI mass
function of local galaxies using tools of Bayesian analysis. Even with a broad
search in parameter space the whole model family fails to match to constraining
data. In the best fitting models, the star formation and feedback parameters in
low-mass haloes are tightly constrained by the two data sets, and the analysis
reveals several generic failures of models that similarly apply to other
existing SAMs. First, based on the assumption that baryon accretion follows the
dark matter accretion, large mass-loading factors are required for haloes with
circular velocities lower than 200 km/s, and most of the wind mass must be
expelled from the haloes. Second, assuming that the feedback is powered by
Type-II supernovae with a Chabrier IMF, the outflow requires more than 25% of
the available SN kinetic energy. Finally, the posterior predictive
distributions for the star formation history are dramatically inconsistent with
observations for masses similar to or smaller than the Milky-Way mass. The
inferences suggest that the current model family is still missing some key
physical processes that regulate the gas accretion and star formation in
galaxies with masses below that of the Milky Way.Comment: 17 pages, 9 figures, 1 table, accepted for publication in MNRA
- …
