112,735 research outputs found
Observation of a single atom in a magneto-optical trap
Fluorescence from Cs atoms in a magneto-optical trap is detected under conditions of very low atomic density. Discrete steps are observed in the fluorescent signal versus time and are associated with the arrival and departure of individual trapped atoms. Histograms of the frequency of occurrence of a given level of fluorescence exhibit a series of uniformly spaced peaks that are attributed to the presence of N = 0, 1, 2 atoms in the trap
Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey
Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
Performance Evaluation of Distributed-Antenna Communications Systems Using Beam-Hopping
Digital beamforming (DBF) techniques are capable of improving the performance of communications systems significantly. However, if the transmitted signals are conflicted with strong interference, especially, in the direction of the transmitted beams , these directional jamming signals will severely degrade the system performance. In order to efficiently mitigate the interference of the directional jammers, in this contribution a beam-hopping (BH) communications scheme is proposed. In the proposed BH communications scheme, only one pair of the beams is used for transmission and it hops from one to the next according to an assigned BH pattern. In this contribution a range of expressions in terms of the average SINR performance have been derived, when both the uplink and downlink are considered. The average SINR performance of the proposed BH scheme and that of the conventional single-beam (SB) as well as multiple-beam (MB) assisted beam-processing schemes have been investigated. Our analysis and results show that the proposed BH scheme is capable of efficiently combating the directional jamming, with the aid of utilizing the directional gain of the beams generated by both the transmitter and the receiver. Furthermore, the BH scheme is capable of reducing the intercept probability of the communications. Therefore, the proposed BH scheme is suitable for communications, when several distributed antenna arrays are available around a mobile
Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity
We present a scheme for efficient state teleportation and entanglement
swapping using a single quantum-dot spin in an optical microcavity based on
giant circular birefringence. State teleportation or entanglement swapping is
heralded by the sequential detection of two photons, and is finished after the
spin measurement. The spin-cavity unit works as a complete Bell-state analyzer
with a built-in spin memory allowing loss-resistant repeater operation. This
device can work in both the weak coupling and the strong coupling regime, but
high efficiencies and high fidelities are only achievable when the side leakage
and cavity loss is low. We assess the feasibility of this device, and show it
can be implemented with current technology. We also propose a spin manipulation
method using single photons, which could be used to preserve the spin coherence
via spin echo techniques.Comment: The manuscript is extended, including BSA fidelity, efficiency, and a
compatible scheme for spin manipulations and spin echoes to prolong the spin
coherenc
Gain-constrained recursive filtering with stochastic nonlinearities and probabilistic sensor delays
This is the post-print of the Article. The official published version can be accessed from the link below - Copyright @ 2013 IEEE.This paper is concerned with the gain-constrained recursive filtering problem for a class of time-varying nonlinear stochastic systems with probabilistic sensor delays and correlated noises. The stochastic nonlinearities are described by statistical means that cover the multiplicative stochastic disturbances as a special case. The phenomenon of probabilistic sensor delays is modeled by introducing a diagonal matrix composed of Bernoulli distributed random variables taking values of 1 or 0, which means that the sensors may experience randomly occurring delays with individual delay characteristics. The process noise is finite-step autocorrelated. The purpose of the addressed gain-constrained filtering problem is to design a filter such that, for all probabilistic sensor delays, stochastic nonlinearities, gain constraint as well as correlated noises, the cost function concerning the filtering error is minimized at each sampling instant, where the filter gain satisfies a certain equality constraint. A new recursive filtering algorithm is developed that ensures both the local optimality and the unbiasedness of the designed filter at each sampling instant which achieving the pre-specified filter gain constraint. A simulation example is provided to illustrate the effectiveness of the proposed filter design approach.This work was supported in part by the National Natural Science Foundation of China by Grants 61273156, 61028008, 60825303, 61104125, and 11271103, National 973 Project by Grant 2009CB320600, the Fok Ying Tung Education Fund by Grant 111064, the Special Fund for the Author of National Excellent Doctoral Dissertation of China by Grant 2007B4, the State Key Laboratory of Integrated Automation for the Process Industry (Northeastern University) of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. by Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany
Robust sliding mode control for discrete stochastic systems with mixed time delays, randomly occurring uncertainties, and randomly occurring nonlinearities
This is the post-print version of the paper. The official published version can be accessed from the link below - Copyright @ 2012 IEEEThis paper investigates the robust sliding mode control (SMC) problem for a class of uncertain nonlinear stochastic systems with mixed time delays. Both the sectorlike nonlinearities and the norm-bounded uncertainties enter into the system in random ways, and such randomly occurring uncertainties and randomly occurring nonlinearities obey certain mutually uncorrelated Bernoulli distributed white noise sequences. The mixed time delays consist of both the discrete and the distributed delays. The time-varying delays are allowed in state. By employing the idea of delay fractioning and constructing a new Lyapunov–Krasovskii functional, sufficient conditions are established to ensure the stability of the system dynamics in the specified sliding surface by solving a certain semidefinite programming problem. A full-state feedback SMC law is designed to guarantee the reaching condition. A simulation example is given to demonstrate the effectiveness of the proposed SMC scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60825303 and 60834003, National 973 Project under Grant 2009CB320600, the Fok Ying Tung Education Fund under Grant 111064, the Special Fund for the Author of National Excellent Doctoral Dissertation of China under Grant 2007B4, the Key Laboratory of Integrated Automation for the Process Industry Northeastern University) from the Ministry of Education of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany
Nonlinear analysis of dynamical complex networks
Copyright © 2013 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Complex networks are composed of a large number of highly interconnected dynamical units and therefore exhibit very complicated dynamics. Examples of such complex networks include the Internet, that is, a network of routers or domains, the World Wide Web (WWW), that is, a network of websites, the brain, that is, a network of neurons, and an organization, that is, a network of people. Since the introduction of the small-world network principle, a great deal of research has been focused on the dependence of the asymptotic behavior of interconnected oscillatory agents on the structural properties of complex networks. It has been found out that the general structure of the interaction network may play a crucial role in the emergence of synchronization phenomena in various fields such as physics, technology, and the life sciences
- …