1,164 research outputs found

    Asteroseismology and calibration of alpha Cen binary system

    Full text link
    Using the oscillation frequencies of alpha Cen A recently discovered by Bouchy & Carrier, the available astrometric, photometric and spectroscopic data, we tried to improve the calibration of the visual binary system alpha Cen. With the revisited masses of Pourbaix et al. (2002) we do not succeed to obtain a solution satisfying all the seismic observational constraints. Relaxing the constraints on the masses, we have found an age t_alpha Cen=4850+-500 Myr, an initial helium mass fraction Y_i = 0.300+-0.008, and an initial metallicity (Z/X)_i=0.0459+-0.0019, with M_A=1.100+-0.006M_o and M_B=0.907+-0.006M_o for alpha Cen A&B.Comment: accepted for publication as a letter in A&

    Generalized r-Modes of the Maclaurin Spheroids

    Get PDF
    Analytical solutions are presented for a class of generalized r-modes of rigidly rotating uniform density stars---the Maclaurin spheroids---with arbitrary values of the angular velocity. Our analysis is based on the work of Bryan; however, we derive the solutions using slightly different coordinates that give purely real representations of the r-modes. The class of generalized r-modes is much larger than the previously studied `classical' r-modes. In particular, for each l and m we find l-m (or l-1 for the m=0 case) distinct r-modes. Many of these previously unstudied r-modes (about 30% of those examined) are subject to a secular instability driven by gravitational radiation. The eigenfunctions of the `classical' r-modes, the l=m+1 case here, are found to have particularly simple analytical representations. These r-modes provide an interesting mathematical example of solutions to a hyperbolic eigenvalue problem.Comment: 12 pages, 3 figures; minor changes and additions as will appear in the version to be published in Physical Review D, January 199

    R-Mode Oscillations and Spindown of Young Rotating Magnetic Neutron Stars

    Get PDF
    Recent work has shown that a young, rapidly rotating neutron star loses angular momentum to gravitational waves generated by unstable r-mode oscillations. We study the spin evolution of a young, magnetic neutron star including both the effects of gravitational radiation and magnetic braking (modeled as magnetic dipole radiation). Our phenomenological description of nonlinear r-modes is similar to, but distinct from, that of Owen et al. (1998) in that our treatment is consistent with the principle of adiabatic invariance in the limit when direct driving and damping of the mode are absent. We show that, while magnetic braking tends to increase the r-mode amplitude by spinning down the neutron star, it nevertheless reduces the efficiency of gravitational wave emission from the star. For B >= 10^14 (\nus/300 Hz)^2 G, where \nus is the spin frequency, the spindown rate and the gravitational waveforms are significantly modified by the effect of magnetic braking. We also estimate the growth rate of the r-mode due to electromagnetic (fast magnetosonic) wave emission and due to Alfven wave emission in the neutron star magnetosphere. The Alfven wave driving of the r-mode becomes more important than the gravitational radiation driving when B >= 10^13 (\nus/150 Hz)^3 G; the electromagnetic wave driving of the r-mode is much weaker. Finally, we study the properties of local Rossby-Alfven waves inside the neutron star and show that the fractional change of the r-mode frequency due to the magnetic field is of order 0.5 (B/10^16 G)^2 (\nus/100 Hz)^-2.Comment: 18 pages, 4 figures; ApJ, accepted (v544: Nov 20, 2000); added two footnotes and more discussion of mode driving by Alfven wave
    • …
    corecore