14,221 research outputs found
A new measurement of thermal conductivity of amorphous ice and its implications for the thermal evolution of comets
Very slowly deposited amorphous ice has a thermal conductivity about four orders of magnitude or more smaller than hitherto estimated. Using the exceedingly low value of the thermal conductivity of comets deduced from the properties of amorphous ice leads to the expectation that internal heating of comets is negligible below the outer several tens of centimeters
Numerical study of parametric pumping current in mesoscopic systems in the presence of a magnetic field
We numerically study the parametric pumped current when magnetic field is applied both in the adiabatic and nonadiabatic regimes. In particular, we investigate the nature of pumped current for systems with resonance as well as antiresonance. It is found that, in the adiabatic regime, the pumped current changes sign across the sharp resonance with long lifetime, while the nonadiabatic pumped current at finite frequency does not. When the lifetime of the resonant level is short, the behaviors of the adiabatic and nonadiabatic pumped currents are similar with sign changes. Our results show that, at the energy where complete transmission occurs, the adiabatic pumped current is zero, while the nonadiabatic pumped current is nonzero. Different from the resonant case, both the adiabatic and nonadiabatic pumped currents are zero at antiresonance with complete reflection. We also investigate the pumped current when the other system parameters such as magnetic field, pumped frequency, and pumping potentials are varied. Interesting behaviors are revealed. Finally, we study the symmetry relation of the pumped current for several systems with different spatial symmetries upon reversal of magnetic field. Different from the previous theoretical prediction, we find that a system with general inversion symmetry can pump out a finite current in both the adiabatic and nonadiabatic regimes with an approximate relation I(B)I(-B) at small magnetic field. It has been shown theoretically that for systems with reflection symmetry, the pumped current satisfies the relation I(B)=I(-B) in the adiabatic regime. Our results show that even for systems evolving from the inversion to reflection symmetry, the pumped current still obeys the relation I(B)=I(-B) in the adiabatic regime at small magnetic field. © 2011 American Physical Society.published_or_final_versio
Identification of the relationship between Chinese Adiantum reniforme var. sinense and Canary Adiantum reniforme
© 2014 Wang et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated
Quantum generalized Reed-Solomon codes: Unified framework for quantum MDS codes
We construct a new family of quantum MDS codes from classical generalized
Reed-Solomon codes and derive the necessary and sufficient condition under
which these quantum codes exist. We also give code bounds and show how to
construct them analytically. We find that existing quantum MDS codes can be
unified under these codes in the sense that when a quantum MDS code exists,
then a quantum code of this type with the same parameters also exists. Thus as
far as is known at present, they are the most important family of quantum MDS
codes.Comment: 9 pages, no figure
More Straightforward Extraction of the Fundamental Lepton Mixing Parameters from Long-Baseline Neutrino Oscillations
We point out the simple reversibility between the fundamental neutrino mixing
parameters in vacuum and their effective counterparts in matter. The former can
therefore be expressed in terms of the latter, allowing more straightforward
extraction of the genuine lepton mixing quantities from a variety of
long-baseline neutrino oscillation experiments. In addition to the
parametrization-independent results, we present the formulas based on the
standard parametrization of the lepton flavor mixing matrix and give a typical
numerical illustration.Comment: RevTex 10 pages. Minor changes. Phys. Rev. D in printin
Polymeric forms of carbon in dense lithium carbide
The immense interest in carbon nanomaterials continues to stimulate intense
research activities aimed to realize carbon nanowires, since linear chains of
carbon atoms are expected to display novel and technologically relevant
optical, electrical and mechanical properties. Although various allotropes of
carbon (e.g., diamond, nanotubes, graphene, etc.) are among the best known
materials, it remains challenging to stabilize carbon in the one-dimensional
form because of the difficulty to suitably saturate the dangling bonds of
carbon. Here, we show through first-principles calculations that ordered
polymeric carbon chains can be stabilized in solid LiC under moderate
pressure. This pressure-induced phase (above 5 GPa) consists of parallel arrays
of twofold zigzag carbon chains embedded in lithium cages, which display a
metallic character due to the formation of partially occupied carbon lone-pair
states in \emph{sp}-like hybrids. It is found that this phase remains the
most favorable one in a wide range of pressure. At extreme pressure (larger the
215 GPa) a structural and electronic phase transition towards an insulating
single-bonded threefold-coordinated carbon network is predicted.Comment: 10 pages, 6 figure
Can the Lepton Flavor Mixing Matrix Be Symmetric?
Current neutrino oscillation data indicate that the 3x3 lepton flavor mixing
matrix V is likely to be symmetric about its V_{e3}-V_{\mu 2}-V_{\tau 1} axis.
This off-diagonal symmetry corresponds to three pairs of {\it congruent}
unitarity triangles in the complex plane. Terrestrial matter effects can
substantially modify the genuine CP-violating parameter and off-diagonal
asymmetries of V in realistic long-baseline experiments of neutrino
oscillations.Comment: RexTex 14 pages (4 PS figures). More discussions adde
The lithium-rotation correlation for WTTS in Taurus-Auriga
Surface lithium abundance and rotation velocity can serve as powerful and
mutually complementary diagnostics of interior structure of stars. So far, the
processes responsible for the lithium depletion during pre-main sequence
evolution are still poorly understood. We investigate whether a correlation
exists between equivalent widths of Li (EW(Li)) and rotation period (P)
for Weak-line T
Tauri stars (WTTSs). We find that rapidly rotating stars have lower EW(Li)
and the fast burning of Li begins at the phase when star's P evolves
towards 3 days among 0.9M to 1.4M
WTTSs in Taurus-Auriga. Our results support the conclusion by Piau &
Turch-Chi\'eze about a model for lithium depletion with age of the star and by
Bouvier et al. in relation to rotation evolution. The turn over of the curve
for the correlation between EW(Li) and P is at the phase of Zero-Age
Main Sequence (ZAMS).
The EW(Li) decreases with decreasing P before the star reaches the
ZAMS, while it decreases with increasing P (decreasing rotation
velocity) for young low-mass main sequence stars. This result could be
explained as an age effect of Li depletion and the rapid rotation does not
inhibit Li destruction among low mass PMS stars.Comment: 5 figure
Multifractal detrending moving average cross-correlation analysis
There are a number of situations in which several signals are simultaneously
recorded in complex systems, which exhibit long-term power-law
cross-correlations. The multifractal detrended cross-correlation analysis
(MF-DCCA) approaches can be used to quantify such cross-correlations, such as
the MF-DCCA based on detrended fluctuation analysis (MF-X-DFA) method. We
develop in this work a class of MF-DCCA algorithms based on the detrending
moving average analysis, called MF-X-DMA. The performances of the MF-X-DMA
algorithms are compared with the MF-X-DFA method by extensive numerical
experiments on pairs of time series generated from bivariate fractional
Brownian motions, two-component autoregressive fractionally integrated moving
average processes and binomial measures, which have theoretical expressions of
the multifractal nature. In all cases, the scaling exponents extracted
from the MF-X-DMA and MF-X-DFA algorithms are very close to the theoretical
values. For bivariate fractional Brownian motions, the scaling exponent of the
cross-correlation is independent of the cross-correlation coefficient between
two time series and the MF-X-DFA and centered MF-X-DMA algorithms have
comparative performance, which outperform the forward and backward MF-X-DMA
algorithms. We apply these algorithms to the return time series of two stock
market indexes and to their volatilities. For the returns, the centered
MF-X-DMA algorithm gives the best estimates of since its
is closest to 0.5 as expected, and the MF-X-DFA algorithm has the
second best performance. For the volatilities, the forward and backward
MF-X-DMA algorithms give similar results, while the centered MF-X-DMA and the
MF-X-DFA algorithms fails to extract rational multifractal nature.Comment: 15 pages, 4 figures, 2 matlab codes for MF-X-DMA and MF-X-DF
- …