1,809 research outputs found

    Comment on "Quantum mechanics of smeared particles"

    Get PDF
    In a recent article, Sastry has proposed a quantum mechanics of smeared particles. We show that the effects induced by the modification of the Heisenberg algebra, proposed to take into account the delocalization of a particle defined via its Compton wavelength, are important enough to be excluded experimentally.Comment: 2 page

    Nonpointlike Particles in Harmonic Oscillators

    Get PDF
    Quantum mechanics ordinarily describes particles as being pointlike, in the sense that the uncertainty Δx\Delta x can, in principle, be made arbitrarily small. It has been shown that suitable correction terms to the canonical commutation relations induce a finite lower bound to spatial localisation. Here, we perturbatively calculate the corrections to the energy levels of an in this sense nonpointlike particle in isotropic harmonic oscillators. Apart from a special case the degeneracy of the energy levels is removed.Comment: LaTeX, 9 pages, 1 figure included via epsf optio

    Determination of Gd concentration profile in UO2-Gd2O3 fuel pellets

    Full text link
    A transversal mapping of the Gd concentration was measured in UO2-Gd2O3 nuclear fuel pellets by electron paramagnetic resonance spectroscopy (EPR). The quantification was made from the comparison with a Gd2O3 reference sample. The nominal concentration in the pellets is UO2: 7.5 % Gd2O3. A concentration gradient was found, which indicates that the Gd2O3 amount diminishes towards the edges of the pellets. The concentration varies from (9.3 +/- 0.5)% in the center to (5.8 +/- 0.3)% in one of the edges. The method was found to be particularly suitable for the precise mapping of the distribution of Gd3+ ions in the UO2 matrix.Comment: 10 pages, 5 figures, 2 tables. Submitted to Journal of Nuclear Material

    Lorentz-covariant deformed algebra with minimal length

    Get PDF
    The DD-dimensional two-parameter deformed algebra with minimal length introduced by Kempf is generalized to a Lorentz-covariant algebra describing a (D+1D+1)-dimensional quantized space-time. For D=3, it includes Snyder algebra as a special case. The deformed Poincar\'e transformations leaving the algebra invariant are identified. Uncertainty relations are studied. In the case of D=1 and one nonvanishing parameter, the bound-state energy spectrum and wavefunctions of the Dirac oscillator are exactly obtained.Comment: 8 pages, no figure, presented at XV International Colloquium on Integrable Systems and Quantum Symmetries (ISQS-15), Prague, June 15-17, 200

    Harmonic oscillator with nonzero minimal uncertainties in both position and momentum in a SUSYQM framework

    Full text link
    In the context of a two-parameter (α,β)(\alpha, \beta) deformation of the canonical commutation relation leading to nonzero minimal uncertainties in both position and momentum, the harmonic oscillator spectrum and eigenvectors are determined by using techniques of supersymmetric quantum mechanics combined with shape invariance under parameter scaling. The resulting supersymmetric partner Hamiltonians correspond to different masses and frequencies. The exponential spectrum is proved to reduce to a previously found quadratic spectrum whenever one of the parameters α\alpha, β\beta vanishes, in which case shape invariance under parameter translation occurs. In the special case where α=β≠0\alpha = \beta \ne 0, the oscillator Hamiltonian is shown to coincide with that of the q-deformed oscillator with q>1q > 1 and its eigenvectors are therefore nn-qq-boson states. In the general case where 0≠α≠β≠00 \ne \alpha \ne \beta \ne 0, the eigenvectors are constructed as linear combinations of nn-qq-boson states by resorting to a Bargmann representation of the latter and to qq-differential calculus. They are finally expressed in terms of a qq-exponential and little qq-Jacobi polynomials.Comment: LaTeX, 24 pages, no figure, minor changes, additional references, final version to be published in JP

    Quantum gravity effects on statistics and compact star configurations

    Full text link
    The thermodynamics of classical and quantum ideal gases based on the Generalized uncertainty principle (GUP) are investigated. At low temperatures, we calculate corrections to the energy and entropy. The equations of state receive small modifications. We study a system comprised of a zero temperature ultra-relativistic Fermi gas. It turns out that at low Fermi energy εF\varepsilon_F, the degenerate pressure and energy are lifted. The Chandrasekhar limit receives a small positive correction. We discuss the applications on configurations of compact stars. As εF\varepsilon_F increases, the radius, total number of fermions and mass first reach their nonvanishing minima and then diverge. Beyond a critical Fermi energy, the radius of a compact star becomes smaller than the Schwarzschild one. The stability of the configurations is also addressed. We find that beyond another critical value of the Fermi energy, the configurations are stable. At large radius, the increment of the degenerate pressure is accelerated at a rate proportional to the radius.Comment: V2. discussions on the stability of star configurations added, 17 pages, 2 figures, typos corrected, version to appear in JHE

    Long thoracic nerve release for scapular winging: Clinical study of a continuous series of eight patients

    Get PDF
    SummaryScapular winging secondary to serratus anterior muscle palsy is a rare pathology. It is usually due to a lesion in the thoracic part of the long thoracic nerve following violent upper-limb stretching with compression on the nerve by the anterior branch of thoracodorsal artery at the “crow's foot landmark” where the artery crosses in front of the nerve. Scapular winging causes upper-limb pain, fatigability or impotence. Diagnosis is clinical and management initially conservative. When functional treatment by physiotherapy fails to bring recovery within 6months and electromyography (EMG) shows increased distal latencies, neurolysis may be suggested. Muscle transfer and scapula-thoracic arthrodesis are considered as palliative treatments. We report a single-surgeon experience of nine open neurolyses of the thoracic part of the long thoracic nerve in eight patients. At 6months’ follow-up, no patients showed continuing signs of winged scapula. Control EMG showed significant reduction in distal latency; Constant scores showed improvement, and VAS-assessed pain was considerably reduced. Neurolysis would thus seem to be the first-line surgical attitude of choice in case of compression confirmed on EMG. The present results would need to be confirmed in larger studies with longer follow-up, but this is made difficult by the rarity of this pathology.Level of evidenceIII

    Ultraviolet cut off and Bosonic Dominance

    Full text link
    We rederive the thermodynamical properties of a non interacting gas in the presence of a minimal uncertainty in length. Apart from the phase space measure which is modified due to a change of the Heisenberg uncertainty relations, the presence of an ultraviolet cut-off plays a tremendous role. The theory admits an intrinsic temperature above which the fermion contribution to energy density, pressure and entropy is negligible.Comment: 12 pages in revtex, 2 figures. Some coefficients have been changed in the A_2 model and two references adde
    • …
    corecore