293,271 research outputs found
Propagating wave in active region-loops, located over the solar disk observed by the Interface Region Imaging Spectrograph
We aim to ascertain the physical parameters of a propagating wave over the
solar disk detected by the Interface Region Imaging Spectrograph (IRIS). Using
imaging data from the IRIS and the Solar Dynamic Observatory (SDO), we tracked
bright spots to determine the parameters of a propagating transverse wave in
active region (AR) loops triggered by activation of a filament. Deriving the
Doppler velocity of Si IV line from spectral observations of IRIS, we have
determined the rotating directions of active region loops which are relevant to
the wave. On 2015 December 19, a filament was located on the polarity inversion
line of the NOAA AR 12470. The filament was activated and then caused a C 1.1
two-ribbon flare. Between the flare ribbons, two rotation motions of a set of
bright loops were observed to appear in turn with opposite directions.
Following the end of the second rotation, a propagating wave and an associated
transverse oscillation were detected in these bright loops. In 1400 A channel,
there was bright material flowing along the loops in a wave-like manner, with a
period of ~128 s and a mean amplitude of ~880 km. For the transverse
oscillation, we tracked a given loop and determine the transverse positions of
the tracking loop in a limited longitudinal range. In both of 1400 A and 171 A
channels, approximately four periods are distinguished during the transverse
oscillation. The mean period of the oscillation is estimated as ~143 s and the
displacement amplitude as between ~1370 km and ~690 km. We interpret these
oscillations as a propagating kink wave and obtain its speed of ~1400 km s-1.
Our observations reveal that a flare associated with filament activation could
trigger a kink propagating wave in active region loops over the solar disk.Comment: Accepted for publication in A&
Momentum relaxation due to polar optical phonons in AlGaN/GaN heterostructures
Using the dielectric continuum (DC) model, momentum relaxation rates are calculated for electrons confined in quasi-two-dimensional (quasi-2D) channels of AlGaN/GaN heterostructures. Particular attention is paid to the effects of half-space and interface modes on the momentum relaxation. The total momentum relaxation rates are compared with those evaluated by the three-dimensional phonon (3DP) model, and also with the Callen results for bulk GaN. In heterostructures with a wide channel (effective channel width >100 Ã…), the DC and 3DP models yield very close momentum relaxation rates. Only for narrow-channel heterostructures do interface phonons become important in momentum relaxation processes, and an abrupt threshold occurs for emission of interface as well as half-space phonons. For a 30-Ã… GaN channel, for instance, the 3DP model is found to underestimate rates just below the bulk phonon energy by 70% and overestimate rates just above the bulk phonon energy by 40% compared to the DC model. Owing to the rapid decrease in the electron-phonon interaction with the phonon wave vector, negative momentum relaxation rates are predicted for interface phonon absorption in usual GaN channels. The total rates remain positive due to the dominant half-space phonon scattering. The quasi-2D rates can have substantially higher peak values than the three-dimensional rates near the phonon emission threshold. Analytical expressions for momentum relaxation rates are obtained in the extreme quantum limits (i.e., the threshold emission and the near subband-bottom absorption). All the results are well explained in terms of electron and phonon densities of states
A Lattice Study of the Glueball Spectrum
Glueball spectrum is studied using an improved gluonic action on asymmetric
lattices in the pure SU(3) gauge theory. The smallest spatial lattice spacing
is about which makes the extrapolation to the continuum limit more
reliable. In particular, attention is paid to the scalar glueball mass which is
known to have problems in the extrapolation. Converting our lattice results to
physical units using the scale set by the static quark potential, we obtain the
following results for the glueball masses: for the
scalar glueball mass and for the tensor glueball.Comment: 10 pages, 2 figures,typos correcte
FLIC Overlap Fermions
The action of the overlap-Dirac operator on a vector is typically implemented
indirectly through a multi-shift conjugate gradient solver. The compute-time
required depends upon the condition number, , of the matrix that is
used as the overlap kernel. While the Wilson action is typically used as the
overlap kernel, the FLIC (Fat Link Irrelevant Clover) action has an improved
condition number and provides up to a factor of two speedup in evaluating the
overlap action. We summarize recent progress on the use of FLIC overlap
fermions.Comment: Lattice2002(chiral
- …