3,102 research outputs found
Atom laser dynamics in a tight-waveguide
We study the transient dynamics that arise during the formation of an atom
laser beam in a tight waveguide. During the time evolution the density profile
develops a series of wiggles which are related to the diffraction in time
phenomenon. The apodization of matter waves, which relies on the use of smooth
aperture functions, allows to suppress such oscillations in a time interval,
after which there is a revival of the diffraction in time. The revival time
scale is directly related to the inverse of the harmonic trap frequency for the
atom reservoir.Comment: 6 pages, 5 figures, to be published in the Proceedings of the 395th
WE-Heraeus Seminar on "Time Dependent Phenomena in Quantum Mechanics ",
organized by T. Kramer and M. Kleber (Blaubeuren, Germany, September 2007
Scaling-up quantum heat engines efficiently via shortcuts to adiabaticity
The finite-time operation of a quantum heat engine that uses a single
particle as a working medium generally increases the output power at the
expense of inducing friction that lowers the cycle efficiency. We propose to
scale up a quantum heat engine utilizing a many-particle working medium in
combination with the use of shortcuts to adiabaticity to boost the nonadiabatic
performance by eliminating quantum friction and reducing the cycle time. To
this end, we first analyze the finite-time thermodynamics of a quantum Otto
cycle implemented with a quantum fluid confined in a time-dependent harmonic
trap. We show that nonadiabatic effects can be controlled and tailored to match
the adiabatic performance using a variety of shortcuts to adiabaticity. As a
result, the nonadiabatic dynamics of the scaled-up many-particle quantum heat
engine exhibits no friction and the cycle can be run at maximum efficiency with
a tunable output power. We demonstrate our results with a working medium
consisting of particles with inverse-square pairwise interactions, that
includes noninteracting and hard-core bosons as limiting cases.Comment: 15 pages, 3 figures; typo in Eq. (51) fixed. Feature paper in the
Special Issue "Quantum Thermodynamics" edited by Prof. Dr. Ronnie Koslof
An inequality of Kostka numbers and Galois groups of Schubert problems
We show that the Galois group of any Schubert problem involving lines in
projective space contains the alternating group. Using a criterion of Vakil and
a special position argument due to Schubert, this follows from a particular
inequality among Kostka numbers of two-rowed tableaux. In most cases, an easy
combinatorial injection proves the inequality. For the remaining cases, we use
that these Kostka numbers appear in tensor product decompositions of
sl_2(C)-modules. Interpreting the tensor product as the action of certain
commuting Toeplitz matrices and using a spectral analysis and Fourier series
rewrites the inequality as the positivity of an integral. We establish the
inequality by estimating this integral.Comment: Extended abstract for FPSAC 201
Is the cosmological dark sector better modeled by a generalized Chaplygin gas or by a scalar field?
Both scalar fields and (generalized) Chaplygin gases have been widely used
separately to characterize the dark sector of the Universe. Here we investigate
the cosmological background dynamics for a mixture of both these components and
quantify the fractional abundances that are admitted by observational data from
supernovae of type Ia and from the evolution of the Hubble rate. Moreover, we
study how the growth rate of (baryonic) matter perturbations is affected by the
dark-sector perturbations.Comment: 20 pages, 9 figures, substantially revised, section on matter
perturbations added, accepted for publication in EPJ
Cosmology with Ricci-type dark energy
We consider the dynamics of a cosmological substratum of pressureless matter
and holographic dark energy with a cutoff length proportional to the Ricci
scale. Stability requirements for the matter perturbations are shown to single
out a model with a fixed relation between the present matter fraction
and the present value of the equation-of-state
parameter of the dark energy. This model has the same number of free parameters
as the CDM model but it has no CDM limit. We discuss the
consistency between background observations and the mentioned
stability-guaranteeing parameter combination.Comment: 6 pages, 3 figures, submitted to the Proceedings of the CosmoSurII
conference, Valpara\'iso, Chile, 27 - 31 May 201
- …