333 research outputs found

    Alternating Control Flow Reconstruction

    Get PDF

    A dynamic explanation for the origin of the western Mediterranean organic-rich layers

    Get PDF
    The eastern Mediterranean sapropels are among the most intensively investigated phenomena in the paleoceanographic record, but relatively little has been written regarding the origin of the equivalent of the sapropels in the western Mediterranean, the organic-rich layers (ORLs). ORLs are recognized as sediment layers containing enhanced total organic carbon that extend throughout the deep basins of the western Mediterranean and are associated with enhanced total barium concentration and a reduced diversity (dysoxic but not anoxic) benthic foraminiferal assemblage. Consequently, it has been suggested that ORLs represent periods of enhanced productivity coupled with reduced deep ventilation, presumably related to increased continental runoff, in close analogy to the sapropels. We demonstrate that despite their superficial similarity, the timing of the deposition of the most recent ORL in the Alboran Sea is different than that of the approximately coincident sapropel, indicating that there are important differences between their modes of formation. We go on to demonstrate, through physical arguments, that a likely explanation for the origin of the Alboran ORLs lies in the response of the western Mediterranean basin to a strong reduction in surface water density and a shoaling of the interface between intermediate and deep water during the deglacial period. Furthermore, we provide evidence that deep convection had already slowed by the time of Heinrich Event 1 and explore this event as a potential agent for preconditioning deep convection collapse. Important differences between Heinrich-like and deglacial-like influences are highlighted, giving new insights into the response of the western Mediterranean system to external forcing

    Excitations in confined helium

    Full text link
    We design models for helium in matrices like aerogel, Vycor or Geltech from a manifestly microscopic point of view. For that purpose, we calculate the dynamic structure function of 4He on Si substrates and between two Si walls as a function of energy, momentum transfer, and the scattering angle. The angle--averaged results are in good agreement with the neutron scattering data; the remaining differences can be attributed to the simplified model used here for the complex pore structure of the materials. A focus of the present work is the detailed identification of coexisting layer modes and bulk--like excitations, and, in the case of thick films, ripplon excitations. Involving essentially two--dimensional motion of atoms, the layer modes are sensitive to the scattering angle.Comment: Phys. Rev. B (2003, in press

    Dynamics of liquid 4He in Vycor

    Full text link
    We have measured the dynamic structure factor of liquid 4He in Vycor using neutron inelastic scattering. Well-defined phonon-roton (p-r) excitations are observed in the superfluid phase for all wave vectors 0.3 < Q < 2.15. The p-r energies and lifetimes at low temperature (T = 0.5 K) and their temperature dependence are the same as in bulk liquid 4He. However, the weight of the single p-r component does not scale with the superfluid fraction (SF) as it does in the bulk. In particular, we observe a p-r excitation between T_c = 1.952 K, where SF = 0, and T_(lambda)=2.172 K of the bulk. This suggests, if the p-r excitation intensity scales with the Bose condensate, that there is a separation of the Bose-Einstein condensation temperature and the superfluid transition temperature T_c of 4He in Vycor. We also observe a two-dimensional layer mode near the roton wave vector. Its dispersion is consistent with specific heat and SF measurements and with layer modes observed on graphite surfaces.Comment: 3 pages, 4 figure

    Adapting the Chumbley Score to Match Striae on Land Engraved Areas (LEAs) of Bullets

    Get PDF
    The same‐source problem remains a major challenge in forensic toolmark and firearm examination. Here, we investigate the applicability of the Chumbley method (J Forensic Sci, 2018, 63, 849; J Forensic Sci, 2010, 55, 953) (10,12), developed for screwdriver markings, for same‐source identification of striations on bullet LEAs. The Hamby datasets 44 and 252 measured by NIST and CSAFE (high‐resolution scans) are used here. We provide methods to identify parameters that minimize error rates for matching of LEAs, and a remedial algorithm to alleviate the problem of failed tests, while increasing the power of the test and reducing error rates. For 85,491 land‐to‐land comparisons (84,235 known nonmatches and 1256 known matches), the adapted test does not provide a result in 176 situations (originally more than 500). The Type I and Type II error rates are 7.2% (6105 out of 84,235) and 21.4% (271 out of 1256), respectively. This puts the proposed method on similar footing as other single‐feature matching approaches in the literature

    Phase phonon spectrum and melting in a quantum rotor model with diagonal disorder

    Full text link
    We study the zero-temperature (T=0T = 0) quantum rotor model with on-site disorder in the charging energy. Such a model may serve as an idealized Hamiltonian for an array of Josephson-coupled small superconducting grains, or superfluid 4^4He in a disordered environment. In the approximation of small-amplitude phase fluctuations, the Hamiltonian maps onto a system of coupled harmonic oscillators with on-site disorder. We study the effects of disorder in this harmonic regime, using the coherent potential approximation (CPA), obtaining the density of states and the lifetimes of the spin-wave-like excitations for several choices of the parameters which characterize the disorder. Finally, we estimate the parameters characterizing the T=0T = 0 quantum melting of the phase order, using a suitable Lindemann criterion.Comment: 8 pages, 5 figures. To be published in Phys. Rev. B. Minor change

    Isolation and individual electrical stimulation of single smooth-muscle cells from the urinary bladder of the pig

    Get PDF
    In contrast to striated muscle, measurements on strips of smooth muscle cannot be uniquely interpreted in terms of an array of contractile units. Therefore scaling down to the single-cell level is necessary to gain detailed understanding of the contractile process in this type of muscle. The present study describes the development of a method for isolating contractile single smooth muscle cells from pig urinary bladders. Contractile responses evoked by individual electrical stimulation were used as a measure of cell quality during development of the method. Responses were evaluated by measuring latency, contraction and relaxation times, as indicated by visible length changes, and stored on-line in a computer. Initial length, relative shortening and shortening speed were determined by measuring cell lengths in previously timed still video frames using a computer-controlled crosshair device. Increase of stimulus pulse duration resulted in improved responses, indicating that the observed shortening represented a physiological contractile response. Ultimately this method of evaluation was applied to two sets of cell preparations obtained by two different methods, one using only collagenase digestion, the other using mechanical manipulation as well. Both sets showed two main patterns of response to electrical stimulation: a pattern of contraction upon stimulation followed by enhanced contraction when stimulation was switched off (CK), and a pattern of contraction upon stimulation followed by relaxation when the stimulus was switched off (CR). The set of preparations containing the highest percentage of CR cells was found to be superior (i.e. greater initial length, shorter latency and contraction times, increased shortening and higher shortening speed). The method of isolation used for this set gives a high yield of contractile cells available for experimental use over a long span of time

    BLISS: an artificial language for learnability studies

    Get PDF
    To explore neurocognitive mechanisms underlying the human language faculty, cognitive scientists use artificial languages to control more precisely the language learning environment and to study selected aspects of natural languages. Artificial languages applied in cognitive studies are usually designed ad hoc, to only probe a specific hypothesis, and they include a miniature grammar and a very small vocabulary. The aim of the present study is the construction of an artificial language incorporating both syntax and semantics, BLISS. Of intermediate complexity, BLISS mimics natural languages by having a vocabulary, syntax, and some semantics, as defined by a degree of non-syntactic statistical dependence between words. We quantify, using information theoretical measures, dependencies between words in BLISS sentences as well as differences between the distinct models we introduce for semantics. While modeling English syntax in its basic version, BLISS can be easily varied in its internal parametric structure, thus allowing studies of the relative learnability of different parameter sets
    corecore