780,407 research outputs found
The Relativistic Quantum Motions
Using the relativistic quantum stationary Hamilton-Jacobi equation within the
framework of the equivalence postulate, and grounding oneself on both
relativistic and quantum Lagrangians, we construct a Lagrangian of a
relativistic quantum system in one dimension and derive a third order equation
of motion representing a first integral of the relativistic quantum Newton's
law. Then, we plot the relativistic quantum trajectories of a particle moving
under the constant and the linear potentials. We establish the existence of
nodes and link them to the de Broglie's wavelength.Comment: Latex, 18 pages, 3 eps figure
Relativistic free-particle quantization on the light-front: New aspects
We use the light-front machinery to study the behavior of a relativistic free
particle and obtain the quantum commutation relations from the classical
Poisson brackets. We argue that the usual projection onto the light-front
coordinates for these from the covariant commutation ralations does not
reproduce the expected results.Comment: To appear in the proceedings "IX Hadron Physics and VII Relativistic
Aspects of Nuclear Physics: A Joint Meeting on QCD and QGP, Hadron
Physics-RANP,2004,Angra dos Reis, Rio de Janeiro,Brazi
Surprises in the relativistic free-particle quantization on the light-front
We use the light front ``machinery'' to study the behavior of a relativistic
free particle and obtain the quantum commutation relations from the classical
Poisson brackets. We argue that their usual projection onto the light-front
coordinates from the covariant commutation relations show that there is an
inconsistency in the expected correlation between canonically conjugate
variables ``time'' and ``energy''. Moreover we show that this incompatibility
originates from the very definition of the Poisson brackets that is employed
and present a simple remedy to this problem and envisages a profound physical
implication on the whole process of quantization.Comment: 13 page
Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales
The first three-dimensional, nonlinear gyrokinetic simulation of plasma
turbulence resolving scales from the ion to electron gyroradius with a
realistic mass ratio is presented, where all damping is provided by resolved
physical mechanisms. The resulting energy spectra are quantitatively consistent
with a magnetic power spectrum scaling of as observed in \emph{in
situ} spacecraft measurements of the "dissipation range" of solar wind
turbulence. Despite the strongly nonlinear nature of the turbulence, the linear
kinetic \Alfven wave mode quantitatively describes the polarization of the
turbulent fluctuations. The collisional ion heating is measured at
sub-ion-Larmor radius scales, which provides the first evidence of the ion
entropy cascade in an electromagnetic turbulence simulation.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
Absence of strong magnetic fluctuations in the iron phosphide superconductors LaFePO and Sr2ScO3FeP
We report neutron inelastic scattering measurements on polycrystalline LaFePO
and Sr2ScO3FeP, two members of the iron phosphide families of superconductors.
No evidence is found for any magnetic fluctuations in the spectrum of either
material in the energy and wavevector ranges probed. Special attention is paid
to the wavevector at which spin-density-wave-like fluctuations are seen in
other iron-based superconductors. We estimate that the magnetic signal, if
present, is at least a factor of four (Sr2ScO3FeP) or seven (LaFePO) smaller
than in the related iron arsenide and chalcogenide superconductors. These
results suggest that magnetic fluctuations are not as influential on the
electronic properties of the iron phosphide systems as they are in other
iron-based superconductors.Comment: 7 pages, 5 figure
Influence of Rotation on Pulsar Radiation Characteristics
We present a relativistic model for pulsar radio emission by including the
effect of rotation on coherent curvature radiation by bunches. We find that
rotation broadens the width of leading component compared to the width of
trailing component. We estimate the component widths in the average pulse
profiles of about 24 pulsars, and find that 19 of them have a broader leading
component. We explain this difference in the component widths by using the
nested cone emission geometry.
We estimate the effect of pulsar spin on the Stokes parameters, and find that
the inclination between the rotation and magnetic axes can introduce an
asymmetry in the circular polarization of the conal components. We analyze the
single pulse polarization data of PSR B0329+54 at 606 MHz, and find that in its
conal components, one sense of circular polarization dominates in the leading
component while the other sense dominates in the trailing component. Our
simulation shows that changing the sign of the impact parameter changes the
sense of circular polarization as well as the swing of polarization angle.Comment: 20 pages, 4 Postscript figures, uses aastex.cls. Accepted for
Publication in ApJ 200
Multi-Frequency Synthesis of VLBI Images Using a Generalized Maximum Entropy Method
A new multi-frequency synthesis algorithm for reconstructing images from
multi-frequency VLBI data is proposed. The algorithm is based on a generalized
maximum-entropy method, and makes it possible to derive an effective spectral
correction for images over a broad frequency bandwidth, while simultaneously
reconstructing the spectral-index distribution over the source. The results of
numerical simulations demonstrating the capabilities of the algorithm are
presented.Comment: 17 pages, 8 figure
Application of a new screening model to thermonuclear reactions of the rp process
A new screening model for astrophysical thermonuclear reactions was derived
recently which improved Salpeter's weak-screening one. In the present work we
prove that the new model can also give very reliable screening enhancement
factors (SEFs) when applied to the rp process. According to the results of the
new model, which agree well with Mitler's SEFs, the screened rp reaction rates
can be, at most, twice as fast as the unscreened ones.Comment: 8 RevTex pages + 7 ps figures. (Revised version). Accepted for
publication in Journal of Physics
Abundances and Kinematics of Field Halo and Disk Stars I: Observational Data and Abundance Analysis
We describe observations and abundance analysis of a high-resolution,
high-S/N survey of 168 stars, most of which are metal-poor dwarfs. We follow a
self-consistent LTE analysis technique to determine the stellar parameters and
abundances, and estimate the effects of random and systematic uncertainties on
the resulting abundances. Element-to-iron ratios are derived for key alpha,
odd, Fe-peak, r- and s-process elements. Effects of Non-LTE on the analysis of
Fe I lines are shown to be very small on the average. Spectroscopically
determined surface gravities are derived that are generally close to those
obtained from Hipparcos parallaxes.Comment: 41 pages, 7 Postscript figures. Accepted for publication in the A
- …