673 research outputs found
Modal coupling procedures adapted to NASTRAN analysis of the 1/8-scale shuttle structural dynamics model. Volume 1: Technical report
A dynamic substructuring analysis, utilizing the component modes technique, of the 1/8 scale space shuttle orbiter finite element model is presented. The analysis was accomplished in 3 phases, using NASTRAN RIGID FORMAT 3, with appropriate Alters, on the IBM 360-370. The orbiter was divided into 5 substructures, each of which was reduced to interface degrees of freedom and generalized normal modes. The reduced substructures were coupled to yield the first 23 symmetric free-free orbiter modes, and the eigenvectors in the original grid point degree of freedom lineup were recovered. A comparison was made with an analysis which was performed with the same model using the direct coordinate elimination approach. Eigenvalues were extracted using the inverse power method
Modal coupling procedures adapted to NASTRAN analysis of the 1/8-scale shuttle structural dynamics model. Volume 2: Supporting data
Appendices are presented to a dynamic substructuring analysis of the 1/8 scale space shuttle orbiter finite element model. For Volume 1, see
Development of technology for fluid-structure interaction modelling of a 1/8-scale dynamic model of the shuttle External Tank (ET). Volume 2: Supporting data appendixes A through C
For abstract, see N75-21359
Development of technology for modeling of a 1/8-scale dynamic model of the shuttle Solid Rocket Booster (SRB)
A NASTRAN analysis of the solid rocket booster (SRB) substructure of the space shuttle 1/8-scale structural dynamics model. The NASTRAN finite element modeling capability was first used to formulate a model of a cylinder 10 in. radius by a 200 in. length to investigate the accuracy and adequacy of the proposed grid point spacing. Results were compared with a shell analysis and demonstrated relatively accurate results for NASTRAN for the lower modes, which were of primary interest. A finite element model of the full SRB was then formed using CQUAD2 plate elements containing membrane and bending stiffness and CBAR offset bar elements to represent the longerons and frames. Three layers of three-dimensional CHEXAI elements were used to model the propellant. This model, consisting of 4000 degrees of freedom (DOF) initially, was reduced to 176 DOF using Guyan reduction. The model was then submitted for complex Eigenvalue analysis. After experiencing considerable difficulty with attempts to run the complete model, it was split into two substructres. These were run separately and combined into a single 116 degree of freedom A set which was successfully run. Results are reported
Analytical and experimental investigation of a 1/8-scale dynamic model of the shuttle orbiter. Volume 3A: Supporting data
For abstract, see N75-15681
Analytical and experimental investigation of a 1/8-scale dynamic model of the shuttle orbiter. Volume 1: Summary report
A 1/8-scale structural dynamics model of the space shuttle orbiter was analyzed using the NASA Structural Analysis System (NASTRAN). Comparison of the calculated eigenvalues with preliminary test data for the unrestrained condition indicate that the analytical model was consistently stiffer, being about 20% higher in the first mode. The eigenvectors show reasonably good agreement with test data. A series of analytical and experimental investigations undertaken to resolve the discrepancy are described. Modifications in the NASTRAN model based upon these investigations resulted in close agreement for both eigenvalues and eigenvectors
A Simulation of High Latitude F-Layer Instabilities in the Presence of Magnetosphere-Ionosphere Coupling
A magnetic-field-line-integrated model of plasma interchange instabilities is developed for the high latitude ionosphere including magnetospheric coupling effects. We show that primary magnetosphere-ionosphere coupling effect is to incorporate the inertia of the magnetospheric plasma in the analysis. As a specific example, we present the first simulation of the E x B instability in the inertial regime, i.e., nu sub i omega where nu sub i is the ion-neutral collision frequency and omega is the wave frequency. We find that the inertial E x B instability develops in a fundamentally different manner than in the collisional case ni sub i omega. Our results show that striations produced in the inertial regime are spread and retarded by ion inertial effects, and result in more isotropic irregularities than those seen in the collisional case
NASTRAN analysis of the 1/8-scale space shuttle dynamic model
The space shuttle configuration has more complex structural dynamic characteristics than previous launch vehicles primarily because of the high model density at low frequencies and the high degree of coupling between the lateral and longitudinal motions. An accurate analytical representation of these characteristics is a primary means for treating structural dynamics problems during the design phase of the shuttle program. The 1/8-scale model program was developed to explore the adequacy of available analytical modeling technology and to provide the means for investigating problems which are more readily treated experimentally. The basic objectives of the 1/8-scale model program are: (1) to provide early verification of analytical modeling procedures on a shuttle-like structure, (2) to demonstrate important vehicle dynamic characteristics of a typical shuttle design, (3) to disclose any previously unanticipated structural dynamic characteristics, and (4) to provide for development and demonstration of cost effective prototype testing procedures
Shuttle wing panel stability analysis
The use of the NASTRAN program in the shuttle wing stability analysis is described, and details of the actual structure, the finite element idealization, and the NASTRAN results are given. A comparison of the NASTRAN results with those obtained with another computer program and with hand generated results indicates good agreement. An alternate approach for solving eigenvalue problems is illustrated and shows a considerable savings in computer time. Some emphasis is placed on the relationship of the NASTRAN analysis in the design process bringing out more clearly the contribution of the results and showing the importance of the mode plots. A deficiency in the NASTRAN plate elements when used to model structures made up of intersecting plates is discussed
- …