238 research outputs found
Flying phase mask for the printing of long submicron-period stitchingless gratings
International audienceLong and stitchingless gratings are printed by means of a read/write head comprising a phase mask illuminated by an intensity modulated laser beam and a reference grating displacement sensor which dictates the modulation period real time. A nearly perfect grating copying is achieved by fixing the sensor grating scale and the written grating substrate on a long platform sliding under the read/write hea
Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays
A proximity focusing Cherenkov imager called CHERCAM, has been built for the
charge measurement of nuclear cosmic rays with the CREAM instrument. It
consists of a silica aerogel radiator plane across from a detector plane
equipped with 1,600 1" diameter photomultipliers. The two planes are separated
by a ring expansion gap. The Cherenkov light yield is proportional to the
charge squared of the incident particle. The expected relative light collection
accuracy is in the few percents range. It leads to an expected single element
separation over the range of nuclear charge Z of main interest 1 < Z < 26.
CHERCAM is designed to fly with the CREAM balloon experiment. The design of the
instrument and the implemented technical solutions allowing its safe operation
in high altitude conditions (radiations, low pressure, cold) are presented.Comment: 24 pages, 19 figure
Recommended from our members
Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation
The Planck High Frequency Instrument (HFI) surveyed the sky continuously from
August 2009 to January 2012. Its noise and sensitivity performance were
excellent, but the rate of cosmic ray impacts on the HFI detectors was
unexpectedly high. Furthermore, collisions of cosmic rays with the focal plane
produced transient signals in the data (glitches) with a wide range of
characteristics. A study of cosmic ray impacts on the HFI detector modules has
been undertaken to categorize and characterize the glitches, to correct the HFI
time-ordered data, and understand the residual effects on Planck maps and data
products. This paper presents an evaluation of the physical origins of glitches
observed by the HFI detectors. In order to better understand the glitches
observed by HFI in flight, several ground-based experiments were conducted with
flight-spare HFI bolometer modules. The experiments were conducted between 2010
and 2013 with HFI test bolometers in different configurations using varying
particles and impact energies. The bolometer modules were exposed to 23 MeV
protons from the Orsay IPN TANDEM accelerator, and to Am and Cm
-particle and Fe radioactive X-ray sources. The calibration data
from the HFI ground-based preflight tests were used to further characterize the
glitches and compare glitch rates with statistical expectations under
laboratory conditions. Test results provide strong evidence that the dominant
family of glitches observed in flight are due to cosmic ray absorption by the
silicon die substrate on which the HFI detectors reside. Glitch energy is
propagated to the thermistor by ballistic phonons, while there is also a
thermal diffusion contribution. The implications of these results for future
satellite missions, especially those in the far-infrared to sub-millimetre and
millimetre regions of the electromagnetic spectrum, are discussed.Comment: 11 pages, 13 figure
Pattern and process in Amazon tree turnover, 1976-2001
Previous work has shown that tree turnover, tree biomass and large liana densities have increased in mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and biodiversity. However, the findings have proved controversial, partly because a rather limited number of permanent plots have been monitored for rather short periods. The aim of this paper is to characterize regional-scale patterns of 'tree turnover' (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess whether concerted changes in turnover are occurring, and if so whether they are general throughout the Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two decades; (iii) mortality and recruitment rates have both increased significantly in every region and environmental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death) because the biomass in these forests has simultaneously increased. Our findings therefore indicate that long-acting and widespread environmental changes are stimulating the growth and productivity of Amazon forests
Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-seq and ESTs
The reference annotations made for a genome sequence provide the framework
for all subsequent analyses of the genome. Correct annotation is particularly
important when interpreting the results of RNA-seq experiments where short
sequence reads are mapped against the genome and assigned to genes according to
the annotation. Inconsistencies in annotations between the reference and the
experimental system can lead to incorrect interpretation of the effect on RNA
expression of an experimental treatment or mutation in the system under study.
Until recently, the genome-wide annotation of 3-prime untranslated regions
received less attention than coding regions and the delineation of intron/exon
boundaries. In this paper, data produced for samples in Human, Chicken and A.
thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing
technology from Helicos Biosciences which locates 3-prime polyadenylation sites
to within +/- 2 nt, were combined with archival EST and RNA-Seq data. Nine
examples are illustrated where this combination of data allowed: (1) gene and
3-prime UTR re-annotation (including extension of one 3-prime UTR by 5.9 kb);
(2) disentangling of gene expression in complex regions; (3) clearer
interpretation of small RNA expression and (4) identification of novel genes.
While the specific examples displayed here may become obsolete as genome
sequences and their annotations are refined, the principles laid out in this
paper will be of general use both to those annotating genomes and those seeking
to interpret existing publically available annotations in the context of their
own experimental dataComment: 44 pages, 9 figure
Polarized Secretion of Drosophila EGFR Ligand from Photoreceptor Neurons Is Controlled by ER Localization of the Ligand-Processing Machinery
Trafficking within the endoplasmic reticulum and specialized localization of the intra-membrane protease Rhomboid regulate EGF ligand-dependent signaling in Drosophila photoreceptor axon termini
Performance status is the most powerful risk factor for early death among patients with advanced soft tissue sarcoma The European Organisation for Research and Treatment of Cancer – Soft Tissue and Bone Sarcoma Group (STBSG) and French Sarcoma Group (FSG) study
BACKGROUND: We investigated prognostic factors (PFs) for 90-day mortality in a large cohort of advanced/metastatic soft tissue sarcoma (STS) patients treated with first-line chemotherapy. METHODS: The PFs were identified by both logistic regression analysis and probability tree analysis in patients captured in the Soft Tissue and Bone Sarcoma Group (STBSG) database (3002 patients). Scores derived from the logistic regression analysis and algorithms derived from probability tree analysis were subsequently validated in an independent study cohort from the French Sarcoma Group (FSG) database (404 patients). RESULTS: The 90-day mortality rate was 8.6 and 4.5% in both cohorts. The logistic regression analysis retained performance status (PS; odds ratio (OR) = 3.83 if PS = 1, OR = 12.00 if PS >= 2), presence of liver metastasis (OR = 2.37) and rare site metastasis (OR = 2.00) as PFs for early death. The CHAID analysis retained PS as a major discriminator followed by histological grade (only for patients with PS >= 2). In both models, PS was the most powerful PF for 90-day mortality. CONCLUSION: Performance status has to be taken into account in the design of further clinical trials and is one of the most important parameters to guide patient management. For those patients with poor PS, expected benefits from therapy should be weighed up carefully against the anticipated toxicities. British Journal of Cancer (2011) 104, 1544-1550. doi: 10.1038/bjc.2011.136 www.bjcancer.com Published online 19 April 2011 (C) 2011 Cancer Research U
SINE RNA Induces Severe Developmental Defects in Arabidopsis thaliana and Interacts with HYL1 (DRB1), a Key Member of the DCL1 Complex
The proper temporal and spatial expression of genes during plant development is governed, in part, by the regulatory activities of various types of small RNAs produced by the different RNAi pathways. Here we report that transgenic Arabidopsis plants constitutively expressing the rapeseed SB1 SINE retroposon exhibit developmental defects resembling those observed in some RNAi mutants. We show that SB1 RNA interacts with HYL1 (DRB1), a double-stranded RNA-binding protein (dsRBP) that associates with the Dicer homologue DCL1 to produce microRNAs. RNase V1 protection assays mapped the binding site of HYL1 to a SB1 region that mimics the hairpin structure of microRNA precursors. We also show that HYL1, upon binding to RNA substrates, induces conformational changes that force single-stranded RNA regions to adopt a structured helix-like conformation. Xenopus laevis ADAR1, but not Arabidopsis DRB4, binds SB1 RNA in the same region as HYL1, suggesting that SINE RNAs bind only a subset of dsRBPs. Consistently, DCL4-DRB4-dependent miRNA accumulation was unchanged in SB1 transgenic Arabidopsis, whereas DCL1-HYL1-dependent miRNA and DCL1-HYL1-DCL4-DRB4-dependent tasiRNA accumulation was decreased. We propose that SINE RNA can modulate the activity of the RNAi pathways in plants and possibly in other eukaryotes
- …