23,762 research outputs found
On the "Security analysis and improvements of arbitrated quantum signature schemes"
Recently, Zou et al. [Phys. Rev. A 82, 042325 (2010)] pointed out that two
arbitrated quantum signature (AQS) schemes are not secure, because an
arbitrator cannot arbitrate the dispute between two users when a receiver
repudiates the integrity of a signature. By using a public board, they try to
propose two AQS schemes to solve the problem. This work shows that the same
security problem may exist in their schemes and also a malicious party can
reveal the other party's secret key without being detected by using the
Trojan-horse attacks. Accordingly, two basic properties of a quantum signature,
i.e. unforgeability and undeniability, may not be satisfied in their scheme
Continuous topological phase transitions between clean quantum Hall states
Continuous transitions between states with the {\em same} symmetry but
different topological orders are studied. Clean quantum Hall (QH) liquids with
neutral quasiparticles are shown to have such transitions. For clean bilayer
(nnm) states, a continous transition to other QH states (including non-Abelian
states) can be driven by increasing interlayer repulsion/tunneling. The
effective theories describing the critical points at some transitions are
derived.Comment: 4 pages, RevTeX, 2 eps figure
Gapless Fermions and Quantum Order
Using 2D quantum spin-1/2 model as a concrete example, we studied the
relation between gapless fermionic excitations (spinons) and quantum orders in
some spin liquid states. Using winding number, we find the projective symmetry
group that characterizes the quantum order directly determines the pattern of
Fermi points in the Brillouin zone. Thus quantum orders provide an origin for
gapless fermionic excitations.Comment: 23 pages. LaTeX. Homepage http://dao.mit.edu/~we
Quantum orders in an exact soluble model
We find all the exact eigenstates and eigenvalues of a spin-1/2 model on
square lattice: . We show
that the ground states for have different quantum orders
described by Z2A and Z2B projective symmetry groups. The phase transition at
represents a new kind of phase transitions that changes quantum orders
but not symmetry. Both the Z2A and Z2B states are described by lattice
gauge theories at low energies. They have robust topologically degenerate
ground states and gapless edge excitations.Comment: 4 pages, RevTeX4, More materials on topological/quantum orders and
quantum computing can be found in http://dao.mit.edu/~we
Fidelity and quantum phase transitions
It is shown that the fidelity, a basic notion of quantum information science,
may be used to characterize quantum phase transitions, regardless of what type
of internal order is present in quantum many-body states. If the fidelity of
two given states vanishes, then there are two cases: (1) they are in the same
phase if the distinguishability results from irrelevant local information; or
(2) they are in different phases if the distinguishability results from
relevant long-distance information. The different effects of irrelevant and
relevant information are quantified, which allows us to identify unstable and
stable fixed points (in the sense of renormalization group theory). A physical
implication of our results is the occurrence of the orthogonality catastrophe
near the transition points.Comment: 5 pages, 2 figure
Binding Transition in Quantum Hall Edge States
We study a class of Abelian quantum Hall (QH) states which are topologically
unstable (T-unstable). We find that the T-unstable QH states can have a phase
transition on the edge which causes a binding between electrons and reduces the
number of gapless edge branches. After the binding transition, the
single-electron tunneling into the edge gains a finite energy gap, and only
certain multi-electron co-tunneling (such as three-electron co-tunneling for
edges) can be gapless. Similar phenomenon also appear for edge state
on the boundary between certain QH states. For example edge on the boundary
between and states only allow three-electron co-tunneling at
low energies after the binding transition.Comment: 4 pages, RevTeX, 1 figur
Bulk and Edge excitations in a quantum Hall ferromagnet
In this article, we shall focus on the collective dynamics of the fermions in
a quantum Hall droplet. Specifically, we propose to look at the
quantum Hall ferromagnet. In this system, the electron spins are ordered in the
ground state due to the exchange part of the Coulomb interaction and the Pauli
exclusion principle. The low energy excitations are ferromagnetic magnons. To
provide a means for describing these magnons, we shall discuss a method of
introducing collective coordinates in the Hilbert space of many-fermion
systems. These collective coordinates are bosonic in nature. They map a part of
the fermionic Hilbert space into a bosonic Hilbert space. Using this technique,
we shall interpret the magnons as bosonic collective ex citations in the
Hilbert space of the many-electron Hall system. By considering a Hall droplet
of finite extent, we shall also obtain the effective Lagrangian governing the
spin collective excitations at the edge of the sample.Comment: Plain TeX 18 Pages Proceedings for the Y2K conference on strongly c
orrelated fermionic systems, Calcutta, Indi
- …