114 research outputs found
BICEP2 / Keck Array VIII: Measurement of gravitational lensing from large-scale B-mode polarization
We present measurements of polarization lensing using the 150 GHz maps which
include all data taken by the BICEP2 & Keck Array CMB polarization experiments
up to and including the 2014 observing season (BK14). Despite their modest
angular resolution (), the excellent sensitivity (K-arcmin) of these maps makes it possible to directly reconstruct the
lensing potential using only information at larger angular scales (). From the auto-spectrum of the reconstructed potential we measure an
amplitude of the spectrum to be (Planck
CDM prediction corresponds to ), and reject
the no-lensing hypothesis at 5.8, which is the highest significance
achieved to date using an EB lensing estimator. Taking the cross-spectrum of
the reconstructed potential with the Planck 2015 lensing map yields
. These direct measurements of
are consistent with the CDM cosmology, and with
that derived from the previously reported BK14 B-mode auto-spectrum (). We perform a series of null tests and consistency
checks to show that these results are robust against systematics and are
insensitive to analysis choices. These results unambiguously demonstrate that
the B-modes previously reported by BICEP / Keck at intermediate angular scales
() are dominated by gravitational lensing. The
good agreement between the lensing amplitudes obtained from the lensing
reconstruction and B-mode spectrum starts to place constraints on any
alternative cosmological sources of B-modes at these angular scales.Comment: 12 pages, 8 figure
BICEP2 / Keck Array V: Measurements of B-mode Polarization at Degree Angular Scales and 150 GHz by the Keck Array
The Keck Array is a system of cosmic microwave background (CMB) polarimeters,
each similar to the BICEP2 experiment. In this paper we report results from the
2012 and 2013 observing seasons, during which the Keck Array consisted of five
receivers all operating in the same (150 GHz) frequency band and observing
field as BICEP2. We again find an excess of B-mode power over the
lensed-CDM expectation of in the range
and confirm that this is not due to systematics using jackknife tests and
simulations based on detailed calibration measurements. In map difference and
spectral difference tests these new data are shown to be consistent with
BICEP2. Finally, we combine the maps from the two experiments to produce final
Q and U maps which have a depth of 57 nK deg (3.4 K arcmin) over an
effective area of 400 deg for an equivalent survey weight of 250,000
K. The final BB band powers have noise uncertainty a factor of 2.3
times better than the previous results, and a significance of detection of
excess power of .Comment: 13 pages, 9 figure
Improved constraints on cosmology and foregrounds from BICEP2 and Keck Array cosmic microwave background data with inclusion of 95 GHz band
We present results from an analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season. This includes the first Keck Array observations at 95 GHz. The maps reach a depth of 50 nK deg in Stokes Q and U in the 150 GHz band and 127 nK deg in the 95 GHz band. We take auto- and cross-spectra between these maps and publicly available maps from WMAP and Planck at frequencies from 23 to 353 GHz. An excess over lensed ΛCDM is detected at modest significance in the 95×150 BB spectrum, and is consistent with the dust contribution expected from our previous work. No significant evidence for synchrotron emission is found in spectra such as 23×95, or for correlation between the dust and synchrotron sky patterns in spectra such as 23×353. We take the likelihood of all the spectra for a multicomponent model including lensed ΛCDM, dust, synchrotron, and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r) using priors on the frequency spectral behaviors of dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions of the sky. This analysis yields an upper limit r0.05<0.09 at 95% confidence, which is robust to variations explored in analysis and priors. Combining these B-mode results with the (more model-dependent) constraints from Planck analysis of CMB temperature plus baryon acoustic oscillations and other data yields a combined limit r0.05<0.07 at 95% confidence. These are the strongest constraints to date on inflationary gravitational waves
Initial performance of Bicep3: a degree angular scale 95 GHz band polarimeter
Bicep3 is a 550-mm aperture telescope with cold, on-axis, refractive optics designed to observe at the 95-GHz band from the South Pole. It is the newest member of the Bicep/Keck family of inflationary probes specifically designed to measure the polarization of the cosmic microwave background (CMB) at degree angular scales. Bicep3 is designed to house 1280 dual-polarization pixels, which, when fully populated, totals to ∼9× the number of pixels in a single Keck 95-GHz receiver, thus further advancing the Bicep/Keck program’s 95 GHz mapping speed. Bicep3 was deployed during the austral summer of 2014–2015 with nine detector tiles, to be increased to its full capacity of 20 in the second season. After instrument characterization, measurements were taken, and CMB observation commenced in April 2015. Together with multi-frequency observation data from Planck, Bicep2, and the Keck Array, Bicep3 is projected to set upper limits on the tensor-to-scalar ratio to r≲0.03 at 95 % C.L
Design and Performance of the First BICEP Array Receiver
Branches of cosmic inflationary models, such as slow-roll inflation, predict a background of primordial gravitational waves that imprints a unique odd-parity “B-mode” pattern in the Cosmic Microwave Background (CMB) at amplitudes that are within experimental reach. The BICEP/Keck (BK) experiment targets this primordial signature, the amplitude of which is parameterized by the tensor-to-scalar ratio r, by observing the polarized microwave sky through the exceptionally clean and stable atmosphere at the South Pole. B-mode measurements require an instrument with exquisite sensitivity, tight control of systematics, and wide frequency coverage to disentangle the primordial signal from the Galactic foregrounds. BICEP Array represents the most recent stage of the BK program and comprises four BICEP3-class receivers observing at 30/40, 95, 150 and 220/270 GHz. The 30/40 GHz receiver will be deployed at the South Pole during the 2019/2020 austral summer. After 3 full years of observations with 30,000+ detectors, BICEP Array will measure primordial gravitational waves to a precision σ(r) between 0.002 and 0.004, depending on foreground complexity and the degree of lensing removal. In this paper, we give an overview of the instrument, highlighting the design features in terms of cryogenics, magnetic shielding, detectors and readout architecture as well as reporting on the integration and tests that are ongoing with the first receiver at 30/40 GHz
- …