224 research outputs found
Lambda-proton correlations in relativistic heavy ion collisions
The prospect of using lambda-proton correlations to extract source sizes in
relativistic heavy ion collisions is investigated. It is found that the strong
interaction induces a large peak in the correlation function that provides more
sensitive source size measurements than two-proton correlations under some
circumstances. The prospect of using lambda-proton correlations to measure the
time lag between lambda and proton emissions is also studied.Comment: 4 pages, 3 figure, revtex style. Two short paragraphs are added at
referees' recommendations. Phys. Rev. Lett. in pres
On spin-rotation contribution to nuclear spin conversion in C_{3v}-symmetry molecules. Application to CH_3F
The symmetrized contribution of E-type spin-rotation interaction to
conversion between spin modifications of E- and A_1-types in molecules with
C_{3v}-symmetry is considered. Using the high-J descending of collisional
broadening for accidental rotational resonances between these spin
modifications, it was possible to co-ordinate the theoretical description of
the conversion with (updated) experimental data for two carbon-substituted
isotopes of fluoromethane. As a result, both E-type spin-rotation constants are
obtained. They are roughly one and a half times more than the corresponding
constants for (deutero)methane.Comment: 13 pages with single-spacing, REVTeX, no figures, accepted for
publication in <J. Phys. B
Nuclear Polarizabilities and Logarithmic Sum Rules
The electric polarizability and logarithmic mean-excitation energy are
calculated for the deuteron using techniques introduced in atomic physics.
These results are then used to improve limits on the atomic-deuterium frequency
shift due to nuclear polarization in the unretarded dipole limit, as well as
confirming previous results.Comment: 7 pages, latex -- To appear in Phys. Rev. C -
Soft-core hyperon-nucleon potentials
A new Nijmegen soft-core OBE potential model is presented for the low-energy
YN interactions. Besides the results for the fit to the scattering data, which
largely defines the model, we also present some applications to hypernuclear
systems using the G-matrix method. An important innovation with respect to the
original soft-core potential is the assignment of the cut-off masses for the
baryon-baryon-meson (BBM) vertices in accordance with broken SU(3), which
serves to connect the NN and the YN channels. As a novel feature, we allow for
medium strong breaking of the coupling constants, using the model with
a Gell-Mann--Okubo hypercharge breaking for the BBM coupling. We present six
hyperon-nucleon potentials which describe the available YN cross section data
equally well, but which exhibit some differences on a more detailed level. The
differences are constructed such that the models encompass a range of
scattering lengths in the and channels. For the
scalar-meson mixing angle we obtained values to 40 degrees, which
points to almost ideal mixing angles for the scalar states. The
G-matrix results indicate that the remarkably different spin-spin terms of the
six potentials appear specifically in the energy spectra of
hypernuclei.Comment: 37 pages, 4 figure
Demonstration of quantum Zeno effect in a superconducting phase qubit
Quantum Zeno effect is a significant tool in quantum manipulating and
computing. We propose its observation in superconducting phase qubit with two
experimentally feasible measurement schemes. The conventional measurement
method is used to achieve the proposed pulse and continuous readout of the
qubit state, which are analyzed by projection assumption and Monte Carlo
wave-function simulation, respectively. Our scheme gives a direct
implementation of quantum Zeno effect in a superconducting phase qubit.Comment: 5 pages, 4 figure
C-axis resistivity and high Tc superconductivity
Recently we had proposed a mechanism for the normal-state C-axis resistivity
of the high-T layered cuprates that involved blocking of the
single-particle tunneling between the weakly coupled planes by strong
intra-planar electron-electron scattering. This gave a C-axis resistivity that
tracks the ab-plane T-linear resistivity, as observed in the high-temperature
limit. In this work this mechanism is examined further for its implication for
the ground-state energy and superconductivity of the layered cuprates. It is
now argued that, unlike the single-particle tunneling, the tunneling of a
boson-like pair between the planes prepared in the BCS-type coherent trial
state remains unblocked inasmuch as the latter is by construction an eigenstate
of the pair annihilation operator. The resulting pair-delocalization along the
C-axis offers energetically a comparative advantage to the paired-up trial
state, and, thus stabilizes superconductivity. In this scheme the strongly
correlated nature of the layered system enters only through the blocking
effect, namely that a given electron is effectively repeatedly monitored
(intra-planarly scattered) by the other electrons acting as an environment, on
a time-scale shorter than the inter-planar tunneling time. Possible
relationship to other inter-layer pairing mechanisms proposed by several
workers in the field is also briefly discussed.Comment: typos in equations corrected, contents unchange
Higher-Order Nuclear-Polarizability Corrections in Atomic Hydrogen
Nuclear-polarizability corrections that go beyond unretarded-dipole
approximation are calculated analytically for hydrogenic (atomic) S-states.
These retardation corrections are evaluated numerically for deuterium and
contribute -0.68 kHz, for a total polarization correction of 18.58(7) kHz. Our
results are in agreement with one previous numerical calculation, and the
retardation corrections completely account for the difference between two
previous calculations. The uncertainty in the deuterium polarizability
correction is substantially reduced. At the level of 0.01 kHz for deuterium,
only three primary nuclear observables contribute: the electric polarizability,
, the paramagnetic susceptibility, , and the third Zemach
moment, . Cartesian multipole decomposition of the virtual
Compton amplitude and its concomitant gauge sum rules are used in the analysis.Comment: 26 pages, latex, 1 figure -- Submitted to Phys. Rev. C -- epsfig.sty
require
Nuclear Sizes and the Isotope Shift
Darwin-Foldy nuclear-size corrections in electronic atoms and nuclear radii
are discussed from the nuclear-physics perspective. Interpretation of precise
isotope-shift measurements is formalism dependent, and care must be exercised
in interpreting these results and those obtained from relativistic electron
scattering from nuclei. We strongly advocate that the entire nuclear-charge
operator be used in calculating nuclear-size corrections in atoms, rather than
relegating portions of it to the non-radiative recoil corrections. A
preliminary examination of the intrinsic deuteron radius obtained from
isotope-shift measurements suggests the presence of small meson-exchange
currents (exotic binding contributions of relativistic order) in the nuclear
charge operator, which contribute approximately 1/2%.Comment: 17 pages, latex, 1 figure -- Submitted to Phys. Rev. A -- epsfig.sty
require
Quasi-Elastic Scattering in the Inclusive (He, t) Reaction
The triton energy spectra of the charge-exchange C(He,t) reaction
at 2 GeV beam energy are analyzed in the quasi-elastic nucleon knock-out
region. Considering that this region is mainly populated by the charge-exchange
of a proton in He with a neutron in the target nucleus and the final proton
going in the continuum, the cross-sections are written in the distorted-wave
impulse approximation. The t-matrix for the elementary exchange process is
constructed in the DWBA, using one pion- plus rho-exchange potential for the
spin-isospin nucleon- nucleon potential. This t-matrix reproduces the
experimental data on the elementary pn np process. The calculated
cross-sections for the C(He,t) reaction at to triton
emission angle are compared with the corresponding experimental data, and are
found in reasonable overall accord.Comment: 19 pages, latex, 11 postscript figures available at
[email protected], submitted to Phy.Rev.
Quark structure of pseudoscalar mesons
I review to which extent the properties of pseudoscalar mesons can be
understood in terms of the underlying quark (and eventually gluon) structure.
Special emphasis is put on the progress in our understanding of eta-eta'
mixing. Process-independent mixing parameters are defined, and relations
between different bases and conventions are studied. Both, the low-energy
description in the framework of Chiral Perturbation Theory and the high-energy
application in terms of light-cone wave functions for partonic Fock states, are
considered. A thorough discussion of theoretical and phenomenological
consequences of the mixing approach will be given. Finally, I will discuss
mixing with other states pi^0, eta(c), ...).Comment: 48 pages, 7 figures, using epsfig.st
- …