5,333 research outputs found
Mid-Infrared Observations of Class I/Flat-Spectrum Systems in Six Nearby Molecular Clouds
We have obtained new mid-infrared observations of 65 Class I/Flat-Spectrum
(F.S.) objects in the Perseus, Taurus, Chamaeleon I/II, Rho Ophiuchi, and
Serpens dark clouds. We detected 45/48 (94%) of the single sources, 16/16
(100%) of the primary components, and 12/16 (75%) of the secondary/triple
components of the binary/multiple objects surveyed. The composite spectral
energy distributions (SEDs) for all of our sample sources are either Class I or
F.S., and, in 15/16 multiple systems, at least one of the individual components
displays a Class I or F.S. spectral index. However, the occurrence of mixed
pairings, such as F.S. with Class I, F.S. with Class II, and, in one case, F.S.
with Class III, is surprisingly frequent. Such behaviour is not consistent with
that of multiple systems among T Tauri stars (TTS), where the companion of a
classical TTS also tends to be a classical TTS, although other mixed pairings
have been previously observed among Class II objects. Based on an analysis of
the spectral indices of the individual binary components, there appears to be a
higher proportion of mixed Class I/F.S. systems (65-80%) than that of mixed
Classical/Weak-Lined TTS (25-40%), demonstrating that the envelopes of Class I/
F.S. systems are rapidly evolving during this evolutionary phase. We report the
discovery of a steep spectral index secondary companion to ISO-ChaI 97,
detected for the first time via our mid-infrared observations. In our previous
near- infrared imaging survey of binary/multiple Class I/F.S. sources, ISO-ChaI
97 appeared to be single. With a spectral index of Alpha >= 3.9, the secondary
component of this system is a member of a rare class of very steep spectral
index objects, those with Alpha > 3. Only three such objects have previously
been reported, all of which are either Class 0 or Class I.Comment: 31 pages, 4 figures, 6 table
Supply driven mortgage choice
Variable mortgage contracts dominate the UK mortgage market (Miles, 2004). The dominance of the variable rate mortgage contracts has important consequences for the transmission mechanism of monetary policy decisions and systemic risks (Khandani et al., 2012; Fuster and Vickery, 2013). This raises an obvious concern that a mortgage market such as that in the UK, where the major proportion of mortgage debt is either at a variable or fixed for less than two years rate (Badarinza, et al., 2013; CML, 2012), is vulnerable to alterations in the interest rate regime. Theoretically, mortgage choice is determined by demand and supply factors. So far, most of the existing literature has focused on the demand side perspective, and what is limited is consideration of supply side factors in empirical investigation on mortgage choice decisions. This paper uniquely explores whether supply side factors may partially explain observed/ex-post mortgage type decisions. Empirical results detect that lenders’ profit motives and mortgage funding/pricing issues may have assisted in preferences toward variable rate contracts. Securitisation is found to positively impact upon gross mortgage lending volumes while negatively impacting upon the share of variable lending flows. This shows that an increase in securitisation not only improves liquidity in the supply of mortgage funds, but also has the potential to shift mortgage choices toward fixed mortgage debt. The policy implications may involve a number of measures, including reconsideration of the capital requirements for the fixed, as opposed to the variable rate mortgage debt, growing securitisation and optimisation of the mortgage pricing policies
The postulates of gravitational thermodynamics
The general principles and logical structure of a thermodynamic formalism
that incorporates strongly self-gravitating systems are presented. This
framework generalizes and simplifies the formulation of thermodynamics
developed by Callen. The definition of extensive variables, the homogeneity
properties of intensive parameters, and the fundamental problem of
gravitational thermodynamics are discussed in detail. In particular, extensive
parameters include quasilocal quantities and are naturally incorporated into a
set of basic general postulates for thermodynamics. These include additivity of
entropies (Massieu functions) and the generalized second law. Fundamental
equations are no longer homogeneous first-order functions of their extensive
variables. It is shown that the postulates lead to a formal resolution of the
fundamental problem despite non-additivity of extensive parameters and
thermodynamic potentials. Therefore, all the results of (gravitational)
thermodynamics are an outgrowth of these postulates. The origin and nature of
the differences with ordinary thermodynamics are analyzed. Consequences of the
formalism include the (spatially) inhomogeneous character of thermodynamic
equilibrium states, a reformulation of the Euler equation, and the absence of a
Gibbs-Duhem relation.Comment: 28 pages, Revtex, no figures. An important sentence and several minor
corrections included. To appear in Physical Review
Developmental changes in the organization of functional connections between the basal ganglia and cerebral cortex
The basal ganglia (BG) comprise a set of subcortical nuclei with sensorimotor, cognitive, and limbic subdivisions, indicative of functional organization. BG dysfunction in several developmental disorders suggests the importance of the healthy maturation of these structures. However, few studies have investigated the development of BG functional organization. Using resting-state functional connectivity MRI (rs-fcMRI), we compared human child and adult functional connectivity of the BG with rs-fcMRI-defined cortical systems. Because children move more than adults, customized preprocessing, including volume censoring, was used to minimize motion-induced rsfcMRI artifact. Our results demonstrated functional organization in the adult BG consistent with subdivisions previously identified in anatomical tracing studies. Group comparisons revealed a developmental shift in bilateral posterior putamen/pallidum clusters from preferential connectivity with the somatomotor “face” system in childhood to preferential connectivity with control/attention systems (frontoparietal, ventral attention) in adulthood. This shift was due to a decline in the functional connectivity of these clusters with the somatomotor face system over development, and no change with control/attention systems. Applying multivariate pattern analysis, we were able to reliably classify individuals as children or adults based on BG–cortical system functional connectivity. Interrogation of the features driving this classification revealed, in addition to the somatomotor face system, contributions by the orbitofrontal, auditory, and somatomotor hand systems. These results demonstrate that BG–cortical functional connectivity evolves over development, and may lend insight into developmental disorders that involve BG dysfunction, particularly those involving motor systems (e.g., Tourette syndrome)
Developmental Changes in the Organization of Functional Connections between the Basal Ganglia and Cerebral Cortex
The basal ganglia (BG) comprise a set of subcortical nuclei with sensorimotor, cognitive, and limbic subdivisions, indicative of functional organization. BG dysfunction in several developmental disorders suggests the importance of the healthy maturation of these structures. However, few studies have investigated the development of BG functional organization. Using resting-state functional connectivity MRI (rs-fcMRI), we compared human child and adult functional connectivity of the BG with rs-fcMRI-defined cortical systems. Because children move more than adults, customized preprocessing, including volume censoring, was used to minimize motion-induced rsfcMRI artifact. Our results demonstrated functional organization in the adult BG consistent with subdivisions previously identified in anatomical tracing studies. Group comparisons revealed a developmental shift in bilateral posterior putamen/pallidum clusters from preferential connectivity with the somatomotor “face” system in childhood to preferential connectivity with control/attention systems (frontoparietal, ventral attention) in adulthood. This shift was due to a decline in the functional connectivity of these clusters with the somatomotor face system over development, and no change with control/attention systems. Applying multivariate pattern analysis, we were able to reliably classify individuals as children or adults based on BG–cortical system functional connectivity. Interrogation of the features driving this classification revealed, in addition to the somatomotor face system, contributions by the orbitofrontal, auditory, and somatomotor hand systems. These results demonstrate that BG–cortical functional connectivity evolves over development, and may lend insight into developmental disorders that involve BG dysfunction, particularly those involving motor systems (e.g., Tourette syndrome)
Algebraic approach in the study of time-dependent nonlinear integrable systems: Case of the singular oscillator
The classical and the quantal problem of a particle interacting in
one-dimension with an external time-dependent quadratic potential and a
constant inverse square potential is studied from the Lie-algebraic point of
view. The integrability of this system is established by evaluating the exact
invariant closely related to the Lewis and Riesenfeld invariant for the
time-dependent harmonic oscillator. We study extensively the special and
interesting case of a kicked quadratic potential from which we derive a new
integrable, nonlinear, area preserving, two-dimensional map which may, for
instance, be used in numerical algorithms that integrate the
Calogero-Sutherland-Moser Hamiltonian. The dynamics, both classical and
quantal, is studied via the time-evolution operator which we evaluate using a
recent method of integrating the quantum Liouville-Bloch equations \cite{rau}.
The results show the exact one-to-one correspondence between the classical and
the quantal dynamics. Our analysis also sheds light on the connection between
properties of the SU(1,1) algebra and that of simple dynamical systems.Comment: 17 pages, 4 figures, Accepted in PR
Correlation Between the Deuteron Characteristics and the Low-energy Triplet np Scattering Parameters
The correlation relationship between the deuteron asymptotic normalization
constant, , and the triplet np scattering length, , is
investigated. It is found that 99.7% of the asymptotic constant is
determined by the scattering length . It is shown that the linear
correlation relationship between the quantities and
provides a good test of correctness of various models of nucleon-nucleon
interaction. It is revealed that, for the normalization constant and
for the root-mean-square deuteron radius , the results obtained with the
experimental value recommended at present for the triplet scattering length
are exaggerated with respect to their experimental counterparts. By
using the latest experimental phase shifts of Arndt et al., we obtain, for the
low-energy scattering parameters (, , ) and for the
deuteron characteristics (, ), results that comply well with
experimental data.Comment: 19 pages, 1 figure, To be published in Physics of Atomic Nucle
Telescope to Observe Planetary Systems (TOPS): a high throughput 1.2-m visible telescope with a small inner working angle
The Telescope to Observe Planetary Systems (TOPS) is a proposed space mission
to image in the visible (0.4-0.9 micron) planetary systems of nearby stars
simultaneously in 16 spectral bands (resolution R~20). For the ~10 most
favorable stars, it will have the sensitivity to discover 2 R_E rocky planets
within habitable zones and characterize their surfaces or atmospheres through
spectrophotometry. Many more massive planets and debris discs will be imaged
and characterized for the first time. With a 1.2m visible telescope, the
proposed mission achieves its power by exploiting the most efficient and robust
coronagraphic and wavefront control techniques. The Phase-Induced Amplitude
Apodization (PIAA) coronagraph used by TOPS allows planet detection at 2
lambda/d with nearly 100% throughput and preserves the telescope angular
resolution. An efficient focal plane wavefront sensing scheme accurately
measures wavefront aberrations which are fed back to the telescope active
primary mirror. Fine wavefront control is also performed independently in each
of 4 spectral channels, resulting in a system that is robust to wavefront
chromaticity.Comment: 12 pages, SPIE conference proceeding, May 2006, Orlando, Florid
Non-Abelian Black Holes in Brans-Dicke Theory
We find a black hole solution with non-Abelian field in Brans-Dicke theory.
It is an extension of non-Abelian black hole in general relativity. We discuss
two non-Abelian fields: "SU(2)" Yang-Mills field with a mass (Proca field) and
the SU(2)SU(2) Skyrme field. In both cases, as in general relativity,
there are two branches of solutions, i.e., two black hole solutions with the
same horizon radius. Masses of both black holes are always smaller than those
in general relativity. A cusp structure in the mass-horizon radius
(-) diagram, which is a typical symptom of stability change in
catastrophe theory, does not appear in the Brans-Dicke frame but is found in
the Einstein conformal frame. This suggests that catastrophe theory may be
simply applied for a stability analysis as it is if we use the variables in the
Einstein frame. We also discuss the effects of the Brans-Dicke scalar field on
black hole structure.Comment: 31 pages, revtex, 21 figure
Relationship Between Net Feed Intake, Performance Traits and Ultrasound Measures of Composition in Beef Steers
Last updated: 6/12/200
- …