150 research outputs found

    Enduring buyer–supplier relationship and buyer performance : the mediating role of buyer–supplier dyadic embeddedness and supplier external embeddedness

    Get PDF
    Purpose – The purpose of this research is to investigate the causal mechanisms that explain the relationship between the long-term buyer–supplier relationship and buyer performance. Building on the growing body of research on social capital in supply chain management (SCM), the authors examine how a buyer achieves superior performance in forming the enduring partnership with a supplier through two different forms of supplier embeddedness: buyer–supplier dyadic embeddedness and supplier external embeddedness. Design/methodology/approach – The bootstrapping method is utilized in data analysis to examine the mediating effects of the two different forms of supplier embeddedness simultaneously on the linkage between the duration of buyer–supplier relationships and buyer performance outcomes. Findings – The authors find that the two forms of supplier embeddedness serve as distinct conduits for the buyer to translate the long-term buyer–supplier relationship into performance effectiveness. Notably, dyadic embeddedness only mediates the linkage between the duration of buyer–supplier relationships and buyer economic performance, while supplier external embeddedness solely mediates the linkage between the duration of buyer–supplier relationships and buyer innovation performance. Originality/value – This study empirically demonstrates that different forms of supplier embeddedness may benefit a buyer differentially when directed at distinct performance goals. If a buyer can leverage both buyer– supplier dyadic embeddedness and supplier external embeddedness, the buyer will overcome value creation limitations of social capital from a single source, obtaining more comprehensive performance benefits sought by developing long-term buyer–supplier relationships.info:eu-repo/semantics/publishedVersio

    The relevance of model-driven engineering thirty years from now

    Get PDF
    International audienceAlthough model-driven engineering (MDE) is now an established approach for developing complex software systems, it has not been universally adopted by the software industry. In order to better understand the reasons for this, as well as to identify future opportunities for MDE, we carried out a week-long design thinking experiment with 15 MDE experts. Participants were facilitated to identify the biggest problems with current MDE technologies, to identify grand challenges for society in the near future, and to identify ways that MDE could help to address these challenges. The outcome is a reflection of the current strengths of MDE, an outlook of the most pressing challenges for society at large over the next three decades, and an analysis of key future MDE research opportunities

    Towards Practical Runtime Verification and Validation of Self-Adaptive Software Systems

    Get PDF
    International audienceSoftware validation and verification (V&V) ensures that software products satisfy user requirements and meet their expected quality attributes throughout their lifecycle. While high levels of adaptation and autonomy provide new ways for software systems to operate in highly dynamic environments, developing certifiable V&V methods for guaranteeing the achievement of self-adaptive software goals is one of the major challenges facing the entire research field. In this chapter we (i) analyze fundamental challenges and concerns for the development of V&V methods and techniques that provide certifiable trust in self-adaptive and self-managing systems; and (ii) present a proposal for including V&V operations explicitly in feedback loops for ensuring the achievement of software self-adaptation goals. Both of these contributions provide valuable starting points for V&V researchers to help advance this field

    Osteoid osteoma of the femur in a 7-month-old infant treated with radiofrequency ablation

    Get PDF
    Osteoid osteoma occurs most commonly in children, adolescents, and young adults between the ages of 5 and 30 years. In the preschool age group, it is quite uncommon, accounting for only 3–8% of all osteoid osteoma cases. We report a case of osteoid osteoma in a 7-month-old infant, who presented with decreased use of the right lower extremity due to pain. Magnetic resonance imaging (MRI) showed an atypical appearance. A biopsy of the lesion, with histopathological examination, confirmed the diagnosis of osteoid osteoma. Radiofrequency ablation (RFA) of the nidus under computed tomography (CT) guidance was performed. The patient developed a recurrence after 3 months, which was treated with a second RFA. On subsequent follow-up, the infant did not show signs of pain after 1 month. In summary, this case report shows that osteoid osteoma can present in early infancy and can be successfully treated with RFA at this age, however, recurrence after the procedure can occur and close follow-up is recommended

    Family doctor-driven follow-up for adult childhood cancer survivors supported by a web-based survivor care plan

    Get PDF
    To facilitate family doctor-driven follow-up for adult childhood cancer survivors, we developed a survivor care plan (SCP) for adult survivors and their family doctors. The SCP was accessible for survivors and their family doctors on a secure website and as a printed booklet. It included data on diagnosis, treatment and potential risks as well as recommendations for follow-up. Childhood cancer survivors who were off-treatment >= 5 years, aged >= 18 years and not involved in a long-term follow-up program were eligible. They were advised to visit their family doctor. The endpoints were numbers of participants, adherence of family doctors to the guidelines and satisfaction ratings. The eligibility criteria were fulfilled by 108 survivors. Three family doctors and 15 survivors refused, 10 survivors were non-responders. Of the remaining 80 survivors, 73 survivors visited 72 family doctors. Sixty-nine (96%) family doctors returned data of whom 60 (83%) fully adhered to the recommended tests. The majority of survivors and family doctors were satisfied about the SCP. A (web-based) SCP for survivors and family doctors can serve as an effective communication vehicle to provide adequate shared care by the long-term follow-up clinic and family doctors

    Thermal weakening friction during seismic slip experiments and models with heat sources and sinks

    Get PDF
    Experiments that systematically explore rock friction under crustal earthquake conditions reveal that faults undergo abrupt dynamic weakening. Processes related to heating and weakening of fault surfaces have been invoked to explain pronounced velocity weakening. Both contact asperity temperature Ta and background temperature T of the slip zone evolve significantly during high-velocity slip due to heat sources (frictional work), heat sinks (e.g., latent heat of decomposition processes), and diffusion. Using carefully calibrated High-Velocity Rotary Friction experiments, we test the compatibility of thermal weakening models: (1) a model of friction based only on T in an extremely simplified, Arrhenius-like thermal dependence; (2) a flash heating model which accounts for the evolution of both V and T; (3) same but including heat sinks in the thermal balance; and (4) same but including the thermal dependence of diffusivity and heat capacity. All models reflect the experimental results but model (1) results in unrealistically low temperatures and model (2) reproduces the restrengthening phase only by modifying the parameters for each experimental condition. The presence of dissipative heat sinks in stage (3) significantly affects T and reflects on the friction, allowing a better joint fit of the initial weakening and final strength recovery across a range of experiments. Temperature is significantly altered by thermal dependence of (4). However, similar results can be obtained by (3) and (4) by adjusting the energy sinks. To compute temperature in this type of problem, we compare the efficiency of three different numerical approximations (finite difference, wavenumber summation, and discrete integral)

    Arsenic-related DNA copy-number alterations in lung squamous cell carcinomas

    Get PDF
    BACKGROUND: Lung squamous cell carcinomas (SqCCs) occur at higher rates following arsenic exposure. Somatic DNA copy-number alterations (CNAs) are understood to be critical drivers in several tumour types. We have assembled a rare panel of lung tumours from a population with chronic arsenic exposure, including SqCC tumours from patients with no smoking history. METHODS: Fifty-two lung SqCCs were analysed by whole-genome tiling-set array comparative genomic hybridisation. Twenty-two were derived from arsenic-exposed patients from Northern Chile (10 never smokers and 12 smokers). Thirty additional cases were obtained for comparison from North American smokers without arsenic exposure. Twenty-two blood samples from healthy individuals from Northern Chile were examined to identify germline DNA copy-number variations (CNVs) that could be excluded from analysis. RESULTS: We identified multiple CNAs associated with arsenic exposure. These alterations were not attributable to either smoking status or CNVs. DNA losses at chromosomes 1q21.1, 7p22.3, 9q12, and 19q13.31 represented the most recurrent events. An arsenic-associated gain at 19q13.33 contains genes previously identified as oncogene candidates. CONCLUSIONS: Our results provide a comprehensive approach to molecular characteristics of the arsenic-exposed lung cancer genome and the non-smoking lung SqCC genome. The distinct and recurrent arsenic-related alterations suggest that this group of tumours may be considered as a separate disease subclass

    Effect of Dam Emplacement and Water Level Changes on Sublacustrine Geomorphology and Recent Sedimentation in Jackson Lake, Grand Teton National Park (Wyoming, United States)

    Get PDF
    Dam installation on a deep hydrologically open lake provides the experimental framework necessary to study the influence of outlet engineering and changing base levels on limnogeological processes. Here, high-resolution seismic reflection profiles, sediment cores, and historical water level elevation datasets were employed to assess the recent depositional history of Jackson Lake, a dammed glacial lake located adjacent to the Teton fault in western Wyoming (USA). Prograding clinoforms imaged in the shallow stratigraphy indicate a recent lake-wide episode of delta abandonment. Submerged ∼11–12 m below the lake surface, these Gilbert-type paleo-deltas represent extensive submerged coarse-grained deposits along the axial and lateral margins of Jackson Lake that resulted from shoreline transgression following dam construction in the early 20th century. Other paleo-lake margin environments, including delta plain, shoreline, and glacial (drumlins, moraines) landforms were likewise inundated following dam installation, and now form prominent features on the lake floor. In deepwater, a detailed chronology was established using 137Cs, 210Pb, and reservoir-corrected 14C for a sediment core that spans ∼1654–2019 Common Era (CE). Dam emplacement (1908–1916 CE) correlates with a nearly five-fold acceleration in accumulation rates and a depositional shift towards carbonaceous sediments. Interbedded organic-rich black diatomaceous oozes and tan silts track changes in reservoir water level elevation, which oscillated in response to regional climate and downstream water needs between 1908 and 2019 CE. Chemostratigraphic patterns of carbon, phosphorus, and sulfur are consistent with a change in nutrient status and productivity, controlled initially by transgression-driven flooding of supralittoral soils and vegetation, and subsequently with water level changes. A thin gravity flow deposit punctuates the deepwater strata and provides a benchmark for turbidite characterization driven by hydroclimate change. Because the Teton fault is a major seismic hazard, end-member characterization of turbidites is a critical first step for accurate discrimination of mass transport deposits controlled by earthquakes in more ancient Jackson Lake strata. Results from this study illustrate the influence of dam installation on sublacustrine geomorphology and sedimentation, which has implications for lake management and ecosystem services. Further, this study demonstrates that Jackson Lake contains an expanded, untapped sedimentary archive recording environmental changes in the American West

    Mutator Suppression and Escape from Replication Error–Induced Extinction in Yeast

    Get PDF
    Cells rely on a network of conserved pathways to govern DNA replication fidelity. Loss of polymerase proofreading or mismatch repair elevates spontaneous mutation and facilitates cellular adaptation. However, double mutants are inviable, suggesting that extreme mutation rates exceed an error threshold. Here we combine alleles that affect DNA polymerase δ (Pol δ) proofreading and mismatch repair to define the maximal error rate in haploid yeast and to characterize genetic suppressors of mutator phenotypes. We show that populations tolerate mutation rates 1,000-fold above wild-type levels but collapse when the rate exceeds 10−3 inactivating mutations per gene per cell division. Variants that escape this error-induced extinction (eex) rapidly emerge from mutator clones. One-third of the escape mutants result from second-site changes in Pol δ that suppress the proofreading-deficient phenotype, while two-thirds are extragenic. The structural locations of the Pol δ changes suggest multiple antimutator mechanisms. Our studies reveal the transient nature of eukaryotic mutators and show that mutator phenotypes are readily suppressed by genetic adaptation. This has implications for the role of mutator phenotypes in cancer
    corecore