209 research outputs found
Biometric conversion factors as a unifying platform for comparative assessment of invasive freshwater bivalves
Invasive bivalves continue to spread and negatively impact freshwater ecosystems worldwide. As different metrics for body size and biomass are frequently used within the literature to standardise bivalve-related ecological impacts (e.g. respiration and filtration rates), the lack of broadly applicable conversion equations currently hinders reliable comparison across bivalve populations. To facilitate improved comparative assessment among studies originating from disparate geographical locations, we report body size and biomass conversion equations for six invasive freshwater bivalves (or species complex members) worldwide: Corbicula fluminea, C. largillierti, Dreissena bugensis, D. polymorpha, Limnoperna fortunei and Sinanodonta woodiana, and tested the reliability (i.e. precision and accuracy) of these equations. Body size (length, width and height) and biomass metrics of living-weight (LW), wet-weight (WW), dry-weight (DW), dry shell-weight (SW), shell free dry-weight (SFDW) and ash-free dry-weight (AFDW) were collected from a total of 44 bivalve populations located in Asia, the Americas and Europe. Relationships between body size and individual biomass metrics, as well as proportional weight-to-weight conversion factors, were determined. For most species, although inherent variation existed between sampled populations, body size directional measurements were found to be good predictors of all biomass metrics (e.g. length to LW, WW, SW or DW: R2 = 0.82–0.96), with moderate to high accuracy for mean absolute error (MAE): ±9.14%–24.19%. Similarly, narrow 95% confidence limits and low MAE were observed for most proportional biomass relationships, indicating high reliability for the calculated conversion factors (e.g. LW to AFDW; CI range: 0.7–2.0, MAE: ±0.7%–2.0%). Synthesis and applications. Our derived biomass prediction equations can be used to rapidly estimate the biologically active biomass of the assessed species, based on simpler biomass or body size measurements for a wide range of situations globally. This allows for the calculation of approximate average indicators that, when combined with density data, can be used to estimate biomass per geographical unit-area and contribute to quantification of population-level effects. These general equations will support meta-analyses, and allow for comparative assessment of historic and contemporary data. Overall, these equations will enable conservation managers to better understand and predict ecological impacts of these bivalves.Fil: Coughlan, Neil E.. The Queens University of Belfast; Irlanda. University College Cork; IrlandaFil: Cunningham, Eoghan M.. The Queens University of Belfast; IrlandaFil: Cuthbert, Ross N.. The Queens University of Belfast; Irlanda. Geomar-Helmholtz Centre for Ocean Research Kiel; AlemaniaFil: Joyce, Patrick W. S.. The Queens University of Belfast; IrlandaFil: Anastácio, Pedro. Universidade de Évora; PortugalFil: Banha, Filipe. Universidade de Évora; PortugalFil: Bonel, Nicolás. UniversitĂ© Montpellier II; Francia. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - BahĂa Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Bradbeer, Stephanie J.. University of Leeds; Reino UnidoFil: Briski, Elizabeta. Geomar-Helmholtz Centre for Ocean Research Kiel; AlemaniaFil: Butitta, Vince L.. University of Wisconsin; Estados UnidosFil: Cadková, Zuzana. Czech University of Life Sciences; RepĂşblica ChecaFil: Dick, Jaimie T. A.. The Queens University of Belfast; IrlandaFil: Douda, Karel. Czech University of Life Sciences; RepĂşblica ChecaFil: Eagling, Lawrence E.. The Queens University of Belfast; IrlandaFil: Ferreira RodrĂguez, NoĂ©. Universidad de Vigo; EspañaFil: HĂĽnicken, Leandro AndrĂ©s. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Johansson, Mattias L.. University of North Georgia; Estados UnidosFil: Kregting, Louise. The Queens University of Belfast; IrlandaFil: Labecka, Anna Maria. Jagiellonian University; PoloniaFil: Li, Deliang. Hunan Agricultural University; ChinaFil: Liquin, Florencia Fernanda. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto para el Estudio de la Biodiversidad de Invertebrados; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Salta; ArgentinaFil: Marescaux, Jonathan. University of Namur; BĂ©lgica. e-biom; BĂ©lgicaFil: Morris, Todd J.. Fisheries and Ocean Canada; CanadáFil: Nowakowska, Patrycja. University of Gdansk; PoloniaFil: Ozgo, Malgorzata. Kazimierz Wielki University; PoloniaFil: Paolucci, Esteban Marcelo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Peribáñez, Miguel A.. Universidad de Zaragoza; EspañaFil: Riccardi, Nicoletta. Consiglio Nazionale delle Ricerche; ItaliaFil: Smith, Emily R. C.. University College London; Estados UnidosFil: Sylvester, Francisco. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto para el Estudio de la Biodiversidad de Invertebrados; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Salta; Argentin
Widespread colonisation of Tanzanian catchments by introduced Oreochromis tilapia fishes: the legacy from decades of deliberate introduction
From the 1950s onwards, programmes to promote aquaculture and improve capture fisheries in East Africa have relied heavily on the promise held by introduced species. In Tanzania these introductions have been poorly documented. Here we report the findings of surveys of inland water bodies across Tanzania between 2011 and 2017 that clarify distributions of tilapiine cichlids of the genus Oreochromis. We identified Oreochromis from 123 sampling locations, including 14 taxa restricted to their native range and three species that have established populations beyond their native range. Of these three species, the only exotic species found was blue-spotted tilapia (Oreochromis leucostictus), while Nile tilapia (Oreochromis niloticus) and Singida tilapia (Oreochromis esculentus), which are both naturally found within the country of Tanzania, have been translocated beyond their native range. Using our records, we developed models of suitable habitat for the introduced species based on recent (1960–1990) and projected (2050, 2070) East African climate. These models indicated that presence of suitable habitat for these introduced species will persist and potentially expand across the region. The clarification of distributions provided here can help inform the monitoring and management of biodiversity, and inform policy related to the future role of introduced species in fisheries and aquaculture
- …