190 research outputs found

    Annihilation of Immobile Reactants on the Bethe Lattice

    Full text link
    Two-particle annihilation reaction, A+A -> inert, for immobile reactants on the Bethe lattice is solved exactly for the initially random distribution. The process reaches an absorbing state in which no nearest-neighbor reactants are left. The approach of the concentration to the limiting value is exponential. The solution reproduces the known one-dimensional result which is further extended to the reaction A+B -> inert.Comment: 12 pp, TeX (plain

    Three-Species Diffusion-Limited Reaction with Continuous Density-Decay Exponents

    Full text link
    We introduce a model of three-species two-particle diffusion-limited reactions A+B -> A or B, B+C -> B or C, and C+A -> C or A, with three persistence parameters (survival probabilities in reaction) of the hopping particle. We consider isotropic and anisotropic diffusion (hopping with a drift) in 1d. We find that the particle density decays as a power-law for certain choices of the persistence parameter values. In the anisotropic case, on one symmetric line in the parameter space, the decay exponent is monotonically varying between the values close to 1/3 and 1/2. On another, less symmetric line, the exponent is constant. For most parameter values, the density does not follow a power-law. We also calculated various characteristic exponents for the distance of nearest particles and domain structure. Our results support the recently proposed possibility that 1d diffusion-limited reactions with a drift do not fall within a limited number of distinct universality classes.Comment: 12 pages in plain LaTeX and four Postscript files with figure

    Model of Cluster Growth and Phase Separation: Exact Results in One Dimension

    Full text link
    We present exact results for a lattice model of cluster growth in 1D. The growth mechanism involves interface hopping and pairwise annihilation supplemented by spontaneous creation of the stable-phase, +1, regions by overturning the unstable-phase, -1, spins with probability p. For cluster coarsening at phase coexistence, p=0, the conventional structure-factor scaling applies. In this limit our model falls in the class of diffusion-limited reactions A+A->inert. The +1 cluster size grows diffusively, ~t**(1/2), and the two-point correlation function obeys scaling. However, for p>0, i.e., for the dynamics of formation of stable phase from unstable phase, we find that structure-factor scaling breaks down; the length scale associated with the size of the growing +1 clusters reflects only the short-distance properties of the two-point correlations.Comment: 12 page

    The duality relation between Glauber dynamics and the diffusion-annihilation model as a similarity transformation

    Full text link
    In this paper we address the relationship between zero temperature Glauber dynamics and the diffusion-annihilation problem in the free fermion case. We show that the well-known duality transformation between the two problems can be formulated as a similarity transformation if one uses appropriate (toroidal) boundary conditions. This allow us to establish and clarify the precise nature of the relationship between the two models. In this way we obtain a one-to-one correspondence between observables and initial states in the two problems. A random initial state in Glauber dynamics is related to a short range correlated state in the annihilation problem. In particular the long-time behaviour of the density in this state is seen to depend on the initial conditions. Hence, we show that the presence of correlations in the initial state determine the dependence of the long time behaviour of the density on the initial conditions, even if such correlations are short-ranged. We also apply a field-theoretical method to the calculation of multi-time correlation functions in this initial state.Comment: 15 pages, Latex file, no figures. To be published in J. Phys. A. Minor changes were made to the previous version to conform with the referee's Repor

    Particle Dynamics in a Mass-Conserving Coalescence Process

    Full text link
    We consider a fully asymmetric one-dimensional model with mass-conserving coalescence. Particles of unit mass enter at one edge of the chain and coalescence while performing a biased random walk towards the other edge where they exit. The conserved particle mass acts as a passive scalar in the reaction process A+AAA+A\to A, and allows an exact mapping to a restricted ballistic surface deposition model for which exact results exist. In particular, the mass- mass correlation function is exactly known. These results complement earlier exact results for the A+AAA+A\to A process without mass. We introduce a comprehensive scaling theory for this process. The exact anaytical and numerical results confirm its validity.Comment: 5 pages, 6 figure

    Exact Results for a Three-Body Reaction-Diffusion System

    Full text link
    A system of particles hopping on a line, singly or as merged pairs, and annihilating in groups of three on encounters, is solved exactly for certain symmetrical initial conditions. The functional form of the density is nearly identical to that found in two-body annihilation, and both systems show non-mean-field, ~1/t**(1/2) instead of ~1/t, decrease of particle density for large times.Comment: 10 page

    Crossover from Rate-Equation to Diffusion-Controlled Kinetics in Two-Particle Coagulation

    Full text link
    We develop an analytical diffusion-equation-type approximation scheme for the one-dimensional coagulation reaction A+A->A with partial reaction probability on particle encounters which are otherwise hard-core. The new approximation describes the crossover from the mean-field rate-equation behavior at short times to the universal, fluctuation-dominated behavior at large times. The approximation becomes quantitatively accurate when the system is initially close to the continuum behavior, i.e., for small initial density and fast reaction. For large initial density and slow reaction, lattice effects are nonnegligible for an extended initial time interval. In such cases our approximation provides the correct description of the initial mean-field as well as the asymptotic large-time, fluctuation-dominated behavior. However, the intermediate-time crossover between the two regimes is described only semiquantitatively.Comment: 21 pages, plain Te

    How the geometry makes the criticality in two - component spreading phenomena?

    Full text link
    We study numerically a two-component A-B spreading model (SMK model) for concave and convex radial growth of 2d-geometries. The seed is chosen to be an occupied circle line, and growth spreads inside the circle (concave geometry) or outside the circle (convex geometry). On the basis of generalised diffusion-annihilation equation for domain evolution, we derive the mean field relations describing quite well the results of numerical investigations. We conclude that the intrinsic universality of the SMK does not depend on the geometry and the dependence of criticality versus the curvature observed in numerical experiments is only an apparent effect. We discuss the dependence of the apparent critical exponent χa\chi_{a} upon the spreading geometry and initial conditions.Comment: Uses iopart.cls, 11 pages with 8 postscript figures embedde

    Anisotropic Diffusion-Limited Reactions with Coagulation and Annihilation

    Full text link
    One-dimensional reaction-diffusion models A+A -> 0, A+A -> A, and $A+B -> 0, where in the latter case like particles coagulate on encounters and move as clusters, are solved exactly with anisotropic hopping rates and assuming synchronous dynamics. Asymptotic large-time results for particle densities are derived and discussed in the framework of universality.Comment: 13 pages in plain Te

    Reaction Kinetics of Clustered Impurities

    Full text link
    We study the density of clustered immobile reactants in the diffusion-controlled single species annihilation. An initial state in which these impurities occupy a subspace of codimension d' leads to a substantial enhancement of their survival probability. The Smoluchowski rate theory suggests that the codimensionality plays a crucial role in determining the long time behavior. The system undergoes a transition at d'=2. For d'<2, a finite fraction of the impurities survive: ni(t) ~ ni(infinity)+const x log(t)/t^{1/2} for d=2 and ni(t) ~ ni(infinity)+const/t^{1/2} for d>2. Above this critical codimension, d'>=2, the subspace decays indefinitely. At the critical codimension, inverse logarithmic decay occurs, ni(t) ~ log(t)^{-a(d,d')}. Above the critical codimension, the decay is algebraic ni(t) ~ t^{-a(d,d')}. In general, the exponents governing the long time behavior depend on the dimension as well as the codimension.Comment: 10 pages, late
    corecore