12 research outputs found

    Consideration of dipole orientation angles yields accurate rate equations for energy transfer in the rapid diffusion limit.

    Get PDF
    Dipole-dipole energy transfer between suitable donor and acceptor chromophores is an important luminescence quenching mechanism and has been shown to be useful for distance determination at the molecular level. In the rapid diffusion limit, where the excited-state lifetime of the donor is long enough to allow the donor and acceptor to diffuse many times their average separation before deexcitation, it is usually assumed that the relative dipolar orientation is completely averaged due to rotational Brownian motion. Under this simplifying assumption, analytical expressions have been derived earlier for the energy transfer rate between donor and acceptor characterized by different geometries. Most such expressions, however, are only approximate because complete angular averaging is permitted only in a geometry that possesses spherical symmetry surrounding each chromophore. In this paper analytical expressions that correctly account for incomplete angle averaging due to steric hindrance are presented for several geometries. Each of the equations reveals a dependence of the energy transfer rate on chromophore orientation. It is shown that correctly accounting for this effect can lead to improvements in estimates of the distance of closest approach from measured quenching rates based on energy transfer experiments

    Self-association accompanies inhibition of Ca-ATPase by thapsigargin.

    Get PDF
    Recent studies have demonstrated a relationship between the activity of the Ca-ATPase of sarcoplasmic reticulum and its state of self-association. In the present study, the effects of thapsigargin (TG), a toxin that specifically inhibits the Ca-ATPase of rabbit skeletal muscle sarcoplasmic reticulum membrane, were studied by detecting the time-resolved phosphorescence anisotropy (TPA) decay of the Ca-ATPase that had been labeled with the phosphorescent probe erythrosin-isothiocyanate (ErITC). Anisotropy decays were fit to a function that consisted of three exponential decays plus a constant background, as well as to a function describing explicitly the uniaxial rotation of proteins in a membrane. In the absence of TG, the anisotropy was best-fit by a model representing the rotation of three populations, corresponding to different-sized oligomeric species in the membrane. The addition of stoichiometric amounts of TG to the Ca-ATPase promptly decreased the overall apparent rate of decay, indicating decreased rotational mobility. A detailed analysis showed that the principal change was not in the rates of rotation but rather in the population distribution of the Ca-ATPase molecules among the different-sized oligomers. TG decreased the proportion of small oligomers and increased the proportion of large ones. Preincubation of the ErITC-SR in 1 mM Ca2+, which stabilizes the E1 conformation relative to E2, was found to protect partially against the changes in the TPA associated with the presence of the inhibitor. These results are consistent with the hypothesis that TG inhibits the Ca-ATPase by stabilizing it in an E2-like conformation, which promotes the formation of larger aggregates of the enzyme. When combined with the effects of other inhibitors on the Ca-ATPase, these results support a general model for the coupling of enzyme conformation and self-association in this system
    corecore