59 research outputs found
Glutamine synthetase in human carotid plaque macrophages associates with features of plaque vulnerability : An immunohistological study
Publisher Copyright: © 2022 The AuthorsBackground and aims: Glutamine synthetase (GLUL), the sole generator of glutamine, is a metabolic nexus molecule also involved in atherosclerosis. We recently demonstrated a 2.2-fold upregulation of GLUL mRNA in stroke-causing carotid plaques when compared with plaques from asymptomatic patients. Here we compared in the same cohort GLUL mRNA expression with plaque gross morphology, and the colocalization of immunodetectable GLUL protein with histopathological changes and molecular and mechanical mediators linked to plaque development. Methods: Endarterectomy specimens from 19 asymptomatic and 24 stroke patients were sectioned longitudinally and immunostained for GLUL, CD68, α-smooth muscle actin, iron, heme oxygenase-1 and CD163, and graded semiquantitatively in every 1 mm2. The amounts of cholesterol clefts and erythrocytes were graded. The fibrous cap thickness within each 1 mm2 area was measured. The association between the local pathological findings was analyzed by a hierarchical mixed modelling approach. Results: The previously found correlation between GLUL mRNA and clinical symptomatology was supported by the increased GLUL mRNA in diseased tissue and increased local GLUL immunoreactivity in areas with multiple different atherosclerotic changes. A longer symptom-to-operation time correlated with lower GLUL mRNA (Rs = −0.423, p=0.050) but few outliers had a significantly higher GLUL mRNA levels, which persisted throughout the post-symptomatic period. Plaque ulceration associated with 1.8-fold higher GLUL mRNA (p=0.006). Macrophages were the main GLUL immunoreactive cells. GLUL immunostaining colocalized with erythrocytes, iron, CD163, and heme oxygenase-1. The correlations between local variables were consistent in both asymptomatic and stroke-causing plaques. An inverse correlation was found between the fibrous cap thickness and local GLUL immunoreactivity (p=0.012). Considerable variability in interplaque expression pattern of GLUL was present. Conclusions: Our results link connect macrophage GLUL expression with carotid plaque features characterizing plaque vulnerability.Peer reviewe
Primary age-related tauopathy in a Finnish population-based study of the oldest old (Vantaa 85+)
Abstract Aims Few studies have investigated primary age-related tauopathy (PART) in a population-based setting. Here, we assessed its prevalence, genetic background, comorbidities and features of cognitive decline in an unselected elderly population. Methods The population-based Vantaa 85+ study includes all 601 inhabitants of Vantaa aged ≥ 85 years in 1991. Neuropathological assessment was possible in 301. Dementia (DSM IIIR criteria) and Mini-Mental State Examination (MMSE) scores were assessed at the baseline of the study and follow-ups. PART subjects were identified according to the criteria by Crary et al and were compared with subjects with mild and severe Alzheimer's disease (AD) neuropathological changes. The effects of other neuropathologies were taken into account using multivariate and sensitivity assays. Genetic analyses included APOE genotypes and 29 polymorphisms of the MAPT 3′ untranslated region (3′UTR region). Results The frequency of PART was 20n = 61/301, definite PART 5. When PART subjects were compared with those with severe AD pathology, dementia was less common, its age at onset was higher and duration shorter. No such differences were seen when compared with those with milder AD pathology. However, both AD groups showed a steeper decline in MMSE scores in follow-ups compared with PART. APOE ε4 frequency was lower, and APOE ε2 frequency higher in the PART group compared with each AD group. The detected nominally significant associations between PART and two MAPT 3′UTR polymorphisms and haplotypes did not survive Bonferroni correction. Conclusions PART is common among very elderly. PART subjects differ from individuals with AD-type changes in the pattern of cognitive decline, associated genetic and neuropathological features.Peer reviewe
Distribution of Lewy-related pathology in the brain, spinal cord, and periphery : the population-based Vantaa 85+study
Evolving evidence has supported the existence of two anatomically distinct Lewy-related pathology (LRP) types. Investigation of spinal cord and peripheral LRP can elucidate mechanisms of Lewy body disorders and origins of synuclein accumulation. Still, very few unselected studies have focused on LRP in these regions. Here we analysed LRP in spinal cord, dorsal root ganglion, and adrenal gland in the population-based Vantaa 85 + study, including every ≥ 85 years old citizen living in the city of Vantaa in 1991 (n = 601). Samples from spinal cord (C6-7, TH3-4, L3-4, S1-2) were available from 303, lumbar dorsal root ganglion from 219, and adrenal gland from 164 subjects. Semiquantitative scores of LRP were determined from immunohistochemically stained sections (anti-alpha-synuclein antibody 5G4). LRP in the ventral and dorsal horns of spinal cord, thoracic intermediolateral column, dorsal root ganglion and adrenal gland were compared with brain LRP, previously determined according to DLB Consortium criteria and by caudo-rostral versus amygdala-based LRP classification. Spinal LRP was found in 28% of the total population and in 61% of those who had LRP in the brain. Spinal cord LRP was found only in those subjects with LRP in the brain, and the quantity of spinal cord LRP was associated with the severity of brain LRP (p Peer reviewe
Effect of occupational exposure to cytostatics and nucleotide excision repair polymorphism on chromosomal aberrations frequency
Authors evaluated the incidence of total chromosomal aberrations (CA) and their types – chromatid-type (CTA) and chromosome-type (CSA) in peripheral blood lymphocytes from 72 oncologic unit's workers occupationally exposed to cytostatics in relationship to polymorphisms of DNA repair genes XPD, XPG and XPC. The cytogenetic analysis was used for determination of chromosomal aberrations frequency and PCR-RFLP method for polymorphisms of genes. Statistically higher frequency of total CA was detected in exposed group as compared to control (1.90±1.34% vs. 1.26±0.93%; Mann-Whitney U-test, p=0.001). There was not detected any difference between CTA and CSA (0.92±1.04% vs. 0.98±1.17%). Similarly, in genes XPD exon 23 and XPC exon 15 wasn't detected any difference neither in total chromosomal aberrations nor in CTA and CSA types. Statistically significant decrease of total chromosomal aberrations and CTA-type with presence of variant allele C was detected in gene XPG exon 15. Authors pointed out the importance of individual susceptibility factors in evaluation of effects of genotoxic agents, in that event, when the concentration does not meet the occupational exposure limit
APOE epsilon 4 associates with increased risk of severe COVID-19, cerebral microhaemorrhages and post-COVID mental fatigue : a Finnish biobank, autopsy and clinical study
Apolipoprotein E epsilon 4 allele (APOE4) has been shown to associate with increased susceptibility to SARS-CoV-2 infection and COVID-19 mortality in some previous genetic studies, but information on the role of APOE4 on the underlying pathology and parallel clinical manifestations is scarce. Here we studied the genetic association between APOE and COVID-19 in Finnish biobank, autopsy and prospective clinical cohort datasets. In line with previous work, our data on 2611 cases showed that APOE4 carriership associates with severe COVID-19 in intensive care patients compared with non-infected population controls after matching for age, sex and cardiovascular disease status. Histopathological examination of brain autopsy material of 21 COVID-19 cases provided evidence that perivascular microhaemorrhages are more prevalent in APOE4 carriers. Finally, our analysis of post-COVID fatigue in a prospective clinical cohort of 156 subjects revealed that APOE4 carriership independently associates with higher mental fatigue compared to non-carriers at six months after initial illness. In conclusion, the present data on Finns suggests that APOE4 is a risk factor for severe COVID-19 and post-COVID mental fatigue and provides the first indication that some of this effect could be mediated via increased cerebrovascular damage. Further studies in larger cohorts and animal models are warranted.Peer reviewe
Gene expression differences between stroke-associated and asymptomatic carotid plaques
Atherosclerotic carotid stenosis is an important risk factor for stroke. Carotid plaques (CPs) causing stroke may present a distinct type of molecular pathology compared with transient ischemic attack (TIA)-associated or asymptomatic plaques. We compared the gene expression profiles of CPs from stroke patients (n = 12) and asymptomatic patients (n = 9), both with similar risk factors and severity of carotid stenosis (>70%). Sixty probes showed over 1.5-fold expression difference at 5% false discovery rate. Functional clustering showed enrichment of genes in 51 GO categories and seven pathways, the most significant of which relate to extracellular-matrix interaction, PPAR gamma signaling, scavanger receptor activity, and lysosomal activity. Differential expression of ten genes was confirmed in an extended replication group (n = 43), where the most significant expression differences were found in CD36 (2.1-fold change, p = 0.005), CD163 (1.7-fold change, p = 0.007) and FABP4 (2.2-fold change, p = 0.015). These include four genes not previously linked to plaque destabilization: GLUL (2.2-fold change, p = 0.016), FUCA1 (2.2-fold change, p = 0.025), IL1RN (1.6-fold change, p = 0.034), and S100A8 (2.5-fold change, p = 0.047). Strong correlations were found to plaque ulceration, plaque hemorrhage, and markers of apoptosis and proliferation (activated caspase 3, TUNEL, and Ki67). Protein expression of these genes was confirmed by immunohistochemistry and was found in the atheromatous areas of CPs critical for plaque destabilization. This study presents a comprehensive transcriptional analysis of stroke-associated CPs and demonstrates a significant transcriptome difference between stroke-associated and asymptomatic CPs. Follow-up studies on the identified genes are needed to define whether they could be used as biomarkers of symptomatic CPs or have a role in plaque destabilization
Genome Instability and Bleomicin Sensitivity Test
Procjena individualne osjetljivosti na mutagene često je dio istraživanja u epidemiološkim studijama koje prate pojavnost zloćudnih bolesti u populacijama. Posljedica djelovanja mutagena u genomu izloženih osoba jest nastanak određene, manje ili veće, količine oštećenja, uvjetovane individualnim razlikama u osjetljivosti. Viša razina takve genomske nestabilnosti znači opasnost (rizik) od razvoja zloćudnih bolesti.
Interindividualne razlike u odgovoru na mutagene obično se povezuju i s promijenjenom (većinom smanjenom) sposobnosti (kapacitetom) za popravak DNA. Citogenetičke studije su pokazale da je genom tumorskih stanica nestabilniji od normalnih, a time i skloniji akumuliranju oštećenja, bilo da je nestabilnost uzrokovana nasljeđem, izloženošću ili kombinacijom tih dvaju učinaka. U oboljelih ispitanika utvrđena je povećana učestalost kromatidnih i kromosomskih aberacija naspram normalne populacije te sklonost
razvoju određenih vrsta neoplazija. U praćenju povezanosti promijenjenog odgovora i pojavnosti tumora služe nam različiti biomarkeri. Kao indirektni pokazatelji uspješnosti popravka DNA često se rabe testovi osjetljivosti na mutagene u kulturama limfocita periferne krvi. Jedan od takvih testova je i bleomicinski
test. Radiomimetik i citostatik, a po strukturi glikopeptid, bleomicin se u stanici prevodi u aktivni oblik sposoban cijepati molekulu DNA što uzrokuje brojne jednolančane i dvolančane lomove. Kao jednostavna
i jeftina metoda, zasniva se na utvrđivanju ukupnog broja jednolančanih lomova u kromosomima limfocita uzgajanih u staničnoj kulturi koji su u uvjetima in vitro tijekom kasne G2-faze staničnog ciklusa bili izloženi bleomicinu. Ovaj revijalni rad daje pregled utjecaja raznih faktora na rezultate samog testa i pokazuje
njegovu široku primjenu u proučavanju genomske nestabilnosti koju najčešće uzrokuje kombinacija raznih faktora.Estimation of individual susceptibility to mutagens is often a part of epidemiological studies monitoring the appearance of malignant disease in different populations. Genome exposure to mutagens can lead to DNA damage. The rate of damage depends on individual differences in response, which are usually associated with differences in DNA repair capacity. Cytogenetic studies have shown that the genome of tumour cells is less stable than normal cells and therefore accumulates more damage. Tumour patients show a higher
frequency of chromatid and chromosomal aberrations and a predisposition to certain types of tumours.
One of the common biomarkers used in monitoring tumour appearance and changed response to DNA damage is the bleomycin test. In its active form, bleomycin (glycopeptid) is a radiomimetic cytostatic that can damage the DNA molecule and cause multiple single and double strands. The bleomycin test is simple and inexpensive, and is based on scoring chromatid breaks in lymphocytes in vitro exposed to bleomycin during the late G2 phase of the cell cycle. This review looks into different factors that may
affect test results and discusses its wide implementation in studies of genome instability usually caused by a combination of factors
- …