111 research outputs found
Magnetic patterning of (Ga,Mn)As by hydrogen passivation
We present an original method to magnetically pattern thin layers of
(Ga,Mn)As. It relies on local hydrogen passivation to significantly lower the
hole density, and thereby locally suppress the carrier-mediated ferromagnetic
phase. The sample surface is thus maintained continuous, and the minimal
structure size is of about 200 nm. In micron-sized ferromagnetic dots
fabricated by hydrogen passivation on perpendicularly magnetized layers, the
switching fields can be maintained closer to the continuous film coercivity,
compared to dots made by usual dry etch techniques
Field-induced domain wall propagation: beyond the one-dimensional model
We have investigated numerically the field-driven propagation of
perpendicularly magnetized ferromagnetic layers. It was then compared to the
historical one-dimensional domain wall (DW) propagation model widely used in
spintronics studies of magnetic nanostructures. In the particular regime of
layer thickness (h) of the order of the exchange length, anomalous velocity
peaks appear in the precessional regime, their shape and position shifting with
h. This has also been observed experimentally. Analyses of the simulations show
a distinct correlation between the curvature of the DW and the twist of the
magnetization vector within it, and the velocity peak. Associating a
phenomenological description of this twist with a four-coordinate DW
propagation model, we reproduce very well these kinks and show that they result
from the torque exerted by the stray field created by the domains on the
twisted magnetization. The position of the peaks is well predicted from the
DW's first flexural mode frequency, and depends strongly on the layer
thickness. Comparison of the proposed model to DW propagation data obtained on
dilute semiconductor ferromagnets GaMnAs and GaMnAsP sheds light on the origin
of the measured peaks
Irreversible magnetization switching using surface acoustic waves
An analytical and numerical approach is developped to pinpoint the optimal
experimental conditions to irreversibly switch magnetization using surface
acoustic waves (SAWs). The layers are magnetized perpendicular to the plane and
two switching mechanisms are considered. In precessional switching, a small
in-plane field initially tilts the magnetization and the passage of the SAW
modifies the magnetic anisotropy parameters through inverse magneto-striction,
which triggers precession, and eventually reversal. Using the micromagnetic
parameters of a fully characterized layer of the magnetic semiconductor
(Ga,Mn)(As,P), we then show that there is a large window of accessible
experimental conditions (SAW amplitude/wave-vector, field
amplitude/orientation) allowing irreversible switching. As this is a resonant
process, the influence of the detuning of the SAW frequency to the magnetic
system's eigenfrequency is also explored. Finally, another - non-resonant -
switching mechanism is briefly contemplated, and found to be applicable to
(Ga,Mn)(As,P): SAW-assisted domain nucleation. In this case, a small
perpendicular field is applied opposite the initial magnetization and the
passage of the SAW lowers the domain nucleation barrier.Comment: 11 pages, 4 figure
Determination of the micromagnetic parameters in (Ga,Mn)As using domain theory
The magnetic domain structure and magnetic properties of a ferromagnetic
(Ga,Mn)As epilayer with perpendicular magnetic easy-axis are investigated. We
show that, despite strong hysteresis, domain theory at thermodynamical
equilibrium can be used to determine the micromagnetic parameters. Combining
magneto-optical Kerr microscopy, magnetometry and ferromagnetic resonance
measurements, we obtain the characteristic parameter for magnetic domains
, the domain wall width and specific energy, and the spin stiffness
constant as a function of temperature. The nucleation barrier for magnetization
reversal and the Walker breakdown velocity for field-driven domain wall
propagation are also estimated
Coupling and induced depinning of magnetic domain walls in adjacent spin valve nanotracks
The magnetostatic interaction between magnetic domain walls (DWs) in adjacent
nanotracks has been shown to produce strong inter-DW coupling and mutual
pinning. In this paper, we have used electrical measurements of adjacent
spin-valve nanotracks to follow the positions of interacting DWs. We show that
the magnetostatic interaction between DWs causes not only mutual pinning, as
observed till now, but that a travelling DW can also induce the depinning of
DWs in near-by tracks. These effects may have great implications for some
proposed high density magnetic devices (e.g. racetrack memory, DW logic
circuits, or DW-based MRAM).Comment: The following article has been accepted by the Journal of Applied
Physic
Magnetic properties and domain structure of (Ga,Mn)As films with perpendicular anisotropy
The ferromagnetism of a thin GaMnAs layer with a perpendicular easy
anisotropy axis is investigated by means of several techniques, that yield a
consistent set of data on the magnetic properties and the domain structure of
this diluted ferromagnetic semiconductor. The magnetic layer was grown under
tensile strain on a relaxed GaInAs buffer layer using a procedure that limits
the density of threading dislocations. Magnetometry, magneto-transport and
polar magneto-optical Kerr effect (PMOKE) measurements reveal the high quality
of this layer, in particular through its high Curie temperature (130 K) and
well-defined magnetic anisotropy. We show that magnetization reversal is
initiated from a limited number of nucleation centers and develops by easy
domain wall propagation. Furthermore, MOKE microscopy allowed us to
characterize in detail the magnetic domain structure. In particular we show
that domain shape and wall motion are very sensitive to some defects, which
prevents a periodic arrangement of the domains. We ascribed these defects to
threading dislocations emerging in the magnetic layer, inherent to the growth
mode on a relaxed buffer
Universal conductance fluctuations in epitaxial GaMnAs ferromagnets: structural and spin disorder
Mesoscopic transport measurements reveal a large effective phase coherence
length in epitaxial GaMnAs ferromagnets, contrary to usual 3d-metal
ferromagnets. Universal conductance fluctuations of single nanowires are
compared for epilayers with a tailored anisotropy. At large magnetic fields,
quantum interferences are due to structural disorder only, and an unusual
behavior related to hole-induced ferromagnetism is evidenced, for both quantum
interferences and decoherence. At small fields, phase coherence is shown to
persist down to zero field, even in presence of magnons, and an additional spin
disorder contribution to quantum interferences is observed under domain walls
nucleation.Comment: 15 pages, 4 figure
Ethoxyfagaronine, a synthetic analogue of fagaronine that inhibits vascular endothelial growth factor-1, as a new anti-angiogeneic agent
Angiogenesis plays a pivotal role in tumorigenesis and also contributes to the pathogenesis of hematologic malignancies. A number of plant compounds have shown efficacy in preclinical and clinical studies and some of them possess an anti-angiogenic activity. Our present findings report anti-angiogenic activities of ethoxyfagaronine (etxfag), a synthetic derivative of fagaronine. Once determined the non-cytotoxic concentration of etxfag, we showed that the drug inhibits VEGF-induced angiogenesis in a Matrigelâ„¢ plug assay and suppresses ex vivo sprouting from VEGF-treated aortic rings. Each feature leading to neovascularization was then investigated and results demonstrate that etxfag prevents VEGF-induced migration and tube formation in human umbilical vein endothelial cells (HUVEC). Moreover, etxfag also suppresses VEGF-induced VEGFR-2 phosphorylation and inhibits FAK phosphorylation at Y-861 as well as focal adhesion complex turnover. Beside these effects, etxfag modifies MT1-MMP localization at the endothelial cell membrane. Finally, immunoprecipitation assay revealed that etxfag decreases VEGF binding to VEGFR-2. As we previously reported that etxfag is able to prevent leukemic cell invasiveness and adhesion to fibronectin, all together our data collectively support the anti-angiogenic activities of etxfag which could represent an additional approach to current anti-cancer therapies
- …