12,945 research outputs found
The impacts for stone curlews of increased traffic on the A11. Model and predictions
Stone curlew nest density in the Breckland region of Eastern England was shown to be negatively related to ‘nearby’ housing density and ‘nearby’ trunk road traffic (based on new traffic data for the period 1988-2006). However, no statistically significant additional relationship with non-trunk A-road traffic could be detected. We recommend using the statistical modelling predictions in the report Table 5 as the best currently available estimates of the potential effect of a 70% increase in A11 average daily (March-August)two-way traffic above the average All traffic levels in 2002-06. The predicted effect of a 70% increase in A11 traffic is for a reduction from current observed nest numbers on suitable arable land of 3.7% with no changes in housing density or 4.9% when combined with the predicted effect of housing options. A reduction of 7.3% is predicted for semi-natural grassland and SSSI habitats. Taking both semi-natural grassland/SSSI and arable habitats together, the observed total average nest numbers for the period 2002-2006 was 221.4, and the prediction following a 70% increase in traffic on the A11 is 210.8, a reduction of 10.6 nests (4.8%)
Studies in upper and lower atmosphere coupling
The theoretical and data-analytic work on upper and lower atmosphere coupling performed under a NASA Headquarters contract during the period April 1978 to March 1979 are summarized. As such, this report is primarily devoted to an overview of various studies published and to be published under this contract. Individual study reports are collected as exhibits. Work performed under the subject contract are in the following four areas of upper-lower atmosphere coupling: (1) Magnetosphere-ionosphere electrodynamic coupling in the aurora; (2) Troposphere-thermosphere coupling; (3) Ionosphere-neutral-atmosphere coupling; and (4) Planetary wave dynamics in the middle atmosphere
Recommended from our members
The effect of competition on the control of invading plant pathogens
1. New invading pathogen strains must compete with endemic pathogen strains to emerge and spread. As disease control measures are often non-specific, i.e. they do not distinguish between strains, applying control not only affects the invading pathogen strain but the endemic as well. We hypothesise that the control of the invasive strain could be compromised due to the non-specific nature of the control.
2. A spatially-explicit model, describing the East African cassava mosaic virus-Uganda strain (EACMV-UG) outbreak, is used to evaluate methods of controlling both disease incidence and spread of invading pathogen strains in pathosystems with and without an endemic pathogen strain present.
3. We find that while many newly introduced or intensified control measures (such as resistant cultivars or roguing) decrease the expected incidence, they have the unintended consequence of increasing, or at least not reducing, the speed with which the invasive pathogen spreads geographically. We identify which controls cause this effect and methods in which these controls may be applied to prevent it.
4. We found that the spatial spread of the invading strain is chiefly governed by the incidence at the wave front. Control can therefore be applied, or intensified, once the wave front has passed without increasing the pathogen’s rate of spread.
5. When trade of planting material occurs, it is possible that the planting material is already infected. The only forms of control in this study that reduces the speed of geographic spread, regardless of the presence of an endemic strain, are those that reduce the amount of trade and the distance over which trade takes place.
6. Synthesis and applications. Imposing trade restrictions before the epidemic has reached a given area and increasing other control methods only once the wave front has passed is the most effective way of both slowing down spread and controlling incidence when the presence of an endemic strain is unknow
A discrete time-dependent method for metastable atoms in intense fields
The full-dimensional time-dependent Schrodinger equation for the electronic
dynamics of single-electron systems in intense external fields is solved
directly using a discrete method.
Our approach combines the finite-difference and Lagrange mesh methods. The
method is applied to calculate the quasienergies and ionization probabilities
of atomic and molecular systems in intense static and dynamic electric fields.
The gauge invariance and accuracy of the method is established. Applications to
multiphoton ionization of positronium and hydrogen atoms and molecules are
presented. At very high intensity above saturation threshold, we extend the
method using a scaling technique to estimate the quasienergies of metastable
states of the hydrogen molecular ion. The results are in good agreement with
recent experiments.Comment: 10 pages, 9 figure, 4 table
On character generators for simple Lie algebras
We study character generating functions (character generators) of simple Lie
algebras. The expression due to Patera and Sharp, derived from the Weyl
character formula, is first reviewed. A new general formula is then found. It
makes clear the distinct roles of ``outside'' and ``inside'' elements of the
integrity basis, and helps determine their quadratic incompatibilities. We
review, analyze and extend the results obtained by Gaskell using the Demazure
character formulas. We find that the fundamental generalized-poset graphs
underlying the character generators can be deduced from such calculations.
These graphs, introduced by Baclawski and Towber, can be simplified for the
purposes of constructing the character generator. The generating functions can
be written easily using the simplified versions, and associated Demazure
expressions. The rank-two algebras are treated in detail, but we believe our
results are indicative of those for general simple Lie algebras.Comment: 50 pages, 11 figure
Comparison of dimethyl sulfoxide treated highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) electrodes for use in indium tin oxide-free organic electronic photovoltaic devices
Indium tin oxide (ITO)-free organic photovoltaic (OPV) devices were fabricated using highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the transparent conductive electrode (TCE). The intrinsic conductivity of the PEDOT:PSS films was improved by two different dimethyl sulfoxide (DMSO) treatments – (i) DMSO was added directly to the PEDOT:PSS solution (PEDOT:PSSADD) and (ii) a pre-formed PEDOT:PSS film was immersed in DMSO (PEDOT:PSSIMM). X-ray photoelectron spectroscopy (XPS) and conductive atomic force microscopy (CAFM) studies showed a large amount of PSS was removed from the PEDOT:PSSIMM electrode surface. OPV devices based on a poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk hetrojunction showed that the PEDOT:PSSIMM electrode out-performed the PEDOT:PSSADD electrode, primarily due to an increase in short circuit current density from 6.62 mA cm−2 to 7.15 mA cm−2. The results highlight the importance of optimising the treatment of PEDOT:PSS electrodes and demonstrate their potential as an alternative TCE for rapid processing and low-cost OPV and other organic electronic devices
- …