14,634 research outputs found

    Scalar Mass Bounds in Two Supersymmetric Extended Electroweak Gauge Models

    Full text link
    In two recently proposed supersymmetric extended electroweak gauge models, the reduced Higgs sector at the 100-GeV energy scale consists of only two doublets, but they have quartic scalar couplings different from those of the minimal supersymmetric standard model. In the SU(2) X SU(2) X U(1) model, there is an absolute upper bound of about 145 GeV on the mass of the lightest neutral scalar boson. In the SU(3) X U(1) model, there is only a parameter-dependent upper bound which formally goes to infinity in a particular limitComment: 9 pages (6 figures not included), UCRHEP-T128 (July 1994

    Estimating insured residential losses from large flood scenarios on the Tone River, Japan – a data integration approach

    Get PDF
    Flooding on the Tone River, which drains the largest catchment area in Japan and is now home to 12 million people, poses significant risk to the Greater Tokyo Area. In April 2010, an expert panel in Japan, the Central Disaster Prevention Council, examined the potential for large-scale flooding and outlined possible mitigation measures in the Greater Tokyo Area. One of the scenarios considered closely mimics the pattern of flooding that occurred with the passage of Typhoon Kathleen in 1947 and would potentially flood some 680 000 households above floor level. Building upon that report, this study presents a Geographical Information System (GIS)-based data integration approach to estimate the insurance losses for residential buildings and contents as just one component of the potential financial cost. Using a range of publicly available data – census information, location reference data, insurance market information and flood water elevation data – this analysis finds that insurance losses for residential property alone could reach approximately 1 trillion JPY (US$ 12.5 billion). Total insurance losses, including commercial and industrial lines of business, are likely to be at least double this figure with total economic costs being much greater again. The results are sensitive to the flood scenario assumed, position of levee failures, local flood depths and extents, population and building heights. The Average Recurrence Interval (ARI) of the rainfall following Typhoon Kathleen has been estimated to be on the order of 200 yr; however, at this juncture it is not possible to put an ARI on the modelled loss since we cannot know the relative or joint probability of the different flooding scenarios. It is possible that more than one of these scenarios could occur simultaneously or that levee failure at one point might lower water levels downstream and avoid a failure at all other points. In addition to insurance applications, spatial analyses like that presented here have implications for emergency management, the cost-benefit of mitigation efforts and land-use planning

    DETERMINATION OF BODY SEGMENT INERTIA PARAMETERS USING 3D HUMAN BODY SCANNER AND 3D CAD SOFTWARE

    Get PDF
    In the field of sports biomechanics, a human body is often treated as a linkage model to investigate various kinds of human movement. This modeling requires body segment inertia parameters (BSPs) such as masses, centers of mass, and moments of inertia. As the quality of motion capture system increases, more accurate BSPs are also needed to get accurate inverse dynamics results. Advanced technology has enabled us to obtain three-dimensional coordinates of the entire body surface. A 3D CAD software has also been able to be applied to measure the human body. It was hypothesized that BSPs with high accuracy could be determined by the combination of a 3D body scanner and a 3D CAD software. The purposes of this study are, first, to introduce a new method of measuring subject-specific BSPs and, second, to compare the BSPs from this study with those from an existing mathematical model in order to show that the proposed method can be used to produce more accurate BSPs

    A Solution for Little Hierarchy Problem and b --> s gamma

    Full text link
    We show that all the parameters which destabilize the weak scale can be taken around the weak scale in the MSSM without conflicting with the SM Higgs mass bound set by LEP experiment. The essential point is that if the lightest CP-even Higgs h in the MSSM has only a small coupling to Z boson, g_{ZZh}, LEP cannot generate the Higgs sufficiently. In the scenario, the SM Higgs mass bound constrains the mass of the heaviest CP-even Higgs H which has the SM like g_{ZZH} coupling. However, it is easier to make the heaviest Higgs heavy by the effect of off-diagonal elements of the mass matrix of the CP-even Higgs because the larger eigenvalue of 2 times 2 matrix becomes larger by introducing off-diagonal elements. Thus, the smaller stop masses can be consistent with the LEP constraints. Moreover, the two excesses observed at LEP Higgs search can naturally be explained as the signals of the MSSM Higgs h and H in this scenario. One of the most interesting results in the scenario is that all the Higgs in the MSSM have the weak scale masses. For example, the charged Higgs mass should be around 130 GeV. This looks inconsistent with the lower bound obtained by the b --> s gamma process as m_{H^\pm}>350GeV. However, we show that the amplitude induced by the charged Higgs can naturally be compensated by that of the chargino if we take the mass parameters by which the little hierarchy problem can be solved. The point is that the both amplitudes have the same order of magnitudes when all the fields in the both loops have the same order of masses.Comment: 14 pages, 5 figures, input parameter slightly changed, figures replaced, references correcte

    Dijet Cross Section and Longitudinal Double Spin Asymmetry Measurements in Polarized Proton-proton Collisions at \sqrt{s}=200 GeV at STAR

    Full text link
    These proceedings show the preliminary results of the dijet cross sections and the dijet longitudinal double spin asymmetries A_LL in polarized proton-proton collisions at \sqrt{s} = 200 GeV at the mid-rapidity |eta| < 0.8. The integrated luminosity of 5.39 pb^{-1} collected during RHIC Run-6 was used in the measurements. The preliminary results are presented as functions of the dijet invariant mass M_jj. The dijet cross sections are in agreement with next-to-leading-order pQCD predictions. The A_LL is compared with theoretical predictions based on various parameterizations of polarized parton distributions of the proton. Projected precision of data analyzed to date from Run-9 are shown.Comment: 8 pages, 5 figures, Proceedings of the SPIN2010 conference (Juelich, Germany, 2010

    Neutrino Magnetic Moments and Minimal Supersymmetric SO(10) Model

    Full text link
    We examine supersymmetric contributions to transition magnetic moments of Majorana neutrinos. We first give the general formula for it. In concrete evaluations, informations of neutrino mass matrix elements including CP phases are necessary. Using unambiguously determined neutrino mass matrices in recently proposed minimal supersymmetric SO(10) model, the transition magnetic moments are calculated. The resultant neutrino magnetic moments are found to be roughly an order of magnitude larger than those calculated in the standard model extended to incorporate the see-saw mechanism.Comment: 8 pages, 4 figures, the version to be published in International Journal of Modern Physics
    • …
    corecore