1,015 research outputs found

    Remarks on Bessel beams, signals and superluminality

    Full text link
    We address the question about the velocity of signals carried by Bessel beams wave packets propagating in vacuum and having well defined wavefronts in time. We find that this problem is analogous to that of propagation of usual plane wave packets within dispersive media and conclude that the signal velocity can not be superluminal.Comment: LaTeX, 16 pages, no figures. Completely revised version, accepted for publication in Physics Letters

    Interacting spin 0 fields with torsion via Duffin-Kemmer-Petiau theory

    Get PDF
    Here we study the behaviour of spin 0 sector of the DKP field in spaces with torsion. First we show that in a Riemann-Cartan manifold the DKP field presents an interaction with torsion when minimal coupling is performed, contrary to the behaviour of the KG field, a result that breaks the usual equivalence between the DKP and the KG fields. Next we analyse the case of Teleparallel Equivalent of General Relativity Weitzenbock manifold, showing that in this case there is a perfect agreement between KG and DKP fields. The origins of both results are also discussed.Comment: 10 pages, no figures, uses REVTEX. Changes in the presentation, minor misprints and one equation corrected. References updated. To appear in General Relativity and Gravitatio

    Gauged Thirring Model in the Heisenberg Picture

    Get PDF
    We consider the (2+1)-dimensional gauged Thirring model in the Heisenberg picture. In this context we evaluate the vacuum polarization tensor as well as the corrected gauge boson propagator and address the issues of generation of mass and dynamics for the gauge boson (in the limits of QED3_3 and Thirring model as a gauge theory, respectively) due to the radiative corrections.Comment: 14 pages, LaTex, no figure

    Spin 1 fields in Riemann-Cartan space-times "via" Duffin-Kemmer-Petiau theory

    Get PDF
    We consider massive spin 1 fields, in Riemann-Cartan space-times, described by Duffin-Kemmer-Petiau theory. We show that this approach induces a coupling between the spin 1 field and the space-time torsion which breaks the usual equivalence with the Proca theory, but that such equivalence is preserved in the context of the Teleparallel Equivalent of General Relativity.Comment: 8 pages, no figures, revtex. Dedicated to Professor Gerhard Wilhelm Bund on the occasion of his 70th birthday. To appear in Gen. Rel. Grav. Equations numbering corrected. References update

    Conformal invariance of massless Duffin-Kemmer-Petiau theory in Riemannian space-times

    Full text link
    We investigate the conformal invariance of massless Duffin-Kemmer-Petiau theory coupled to riemannian space-times. We show that, as usual, in the minimal coupling procedure only the spin 1 sector of the theory -which corresponds to the electromagnetic field- is conformally invariant. We show also that the conformal invariance of the spin 0 sector can be naturally achieved by introducing a compensating term in the lagrangian. Such a procedure -besides not modifying the spin 1 sector- leads to the well-known conformal coupling between the scalar curvature and the massless Klein-Gordon-Fock field. Going beyond the riemannian spacetimes, we briefly discuss the effects of a nonvanishing torsion in the scalar case.Comment: 8 pages, no figures. Major changes in contend and results. To appear in Class.Quant.Gra

    Relativistic Tunneling Through Two Successive Barriers

    Full text link
    We study the relativistic quantum mechanical problem of a Dirac particle tunneling through two successive electrostatic barriers. Our aim is to study the emergence of the so-called \emph{Generalized Hartman Effect}, an effect observed in the context of nonrelativistic tunneling as well as in its electromagnetic counterparts, and which is often associated with the possibility of superluminal velocities in the tunneling process. We discuss the behavior of both the phase (or group) tunneling time and the dwell time, and show that in the limit of opaque barriers the relativistic theory also allows the emergence of the Generalized Hartman Effect. We compare our results with the nonrelativistic ones and discuss their interpretation.Comment: 7 pages, 3 figures. Revised version, with a new appendix added. Slightly changes in the styles and captions of Figures 1 and 2. To appear in Physical Review

    Dynamic Transitions for Quasilinear Systems and Cahn-Hilliard equation with Onsager mobility

    Full text link
    The main objectives of this article are two-fold. First, we study the effect of the nonlinear Onsager mobility on the phase transition and on the well-posedness of the Cahn-Hilliard equation modeling a binary system. It is shown in particular that the dynamic transition is essentially independent of the nonlinearity of the Onsager mobility. However, the nonlinearity of the mobility does cause substantial technical difficulty for the well-posedness and for carrying out the dynamic transition analysis. For this reason, as a second objective, we introduce a systematic approach to deal with phase transition problems modeled by quasilinear partial differential equation, following the ideas of the dynamic transition theory developed recently by Ma and Wang
    • …
    corecore