8,078 research outputs found

    Magnetostrictive behaviour of thin superconducting disks

    Full text link
    Flux-pinning-induced stress and strain distributions in a thin disk superconductor in a perpendicular magnetic field is analyzed. We calculate the body forces, solve the magneto-elastic problem and derive formulas for all stress and strain components, including the magnetostriction ΔR/R\Delta R/R. The flux and current density profiles in the disk are assumed to follow the Bean model. During a cycle of the applied field the maximum tensile stress is found to occur approximately midway between the maximum field and the remanent state. An effective relationship between this overall maximum stress and the peak field is found.Comment: 8 pages, 6 figures, submitted to Supercond. Sci. Technol., Proceed. of MEM03 in Kyot

    Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration

    Get PDF
    We present simulations of the non-linear evolution of streaming instabilities in protoplanetary disks. The two components of the disk, gas treated with grid hydrodynamics and solids treated as superparticles, are mutually coupled by drag forces. We find that the initially laminar equilibrium flow spontaneously develops into turbulence in our unstratified local model. Marginally coupled solids (that couple to the gas on a Keplerian time-scale) trigger an upward cascade to large particle clumps with peak overdensities above 100. The clumps evolve dynamically by losing material downstream to the radial drift flow while receiving recycled material from upstream. Smaller, more tightly coupled solids produce weaker turbulence with more transient overdensities on smaller length scales. The net inward radial drift is decreased for marginally coupled particles, whereas the tightly coupled particles migrate faster in the saturated turbulent state. The turbulent diffusion of solid particles, measured by their random walk, depends strongly on their stopping time and on the solids-to-gas ratio of the background state, but diffusion is generally modest, particularly for tightly coupled solids. Angular momentum transport is too weak and of the wrong sign to influence stellar accretion. Self-gravity and collisions will be needed to determine the relevance of particle overdensities for planetesimal formation.Comment: Accepted for publication in ApJ (17 pages). Movies of the simulations can be downloaded at http://www.mpia.de/~johansen/research_en.ph

    Oscillatory regimes of the thermomagnetic instability in superconducting films

    Full text link
    The stability of superconducting films with respect to oscillatory precursor modes for thermomag- netic avalanches is investigated theoretically. The results for the onset threshold show that previous treatments of non-oscillatory modes have predicted much higher thresholds. Thus, in film supercon- ductors, oscillatory modes are far more likely to cause thermomagnetic breakdown. This explains the experimental fact that flux avalanches in film superconductors can occur even at very small ramping rates of the applied magnetic field. Closed expressions for the threshold magnetic field and temperature, as well oscillation frequency, are derived for different regimes of the oscillatory thermomagnetic instability.Comment: 5 pages, 5 figure

    Dendritic flux avalanches in rectangular superconducting films -- numerical simulations

    Full text link
    Dendritic flux avalanches is a frequently encountered instability in the vortex matter of type II superconducting films at low temperatures. Previously, linear stability analysis has shown that such avalanches should be nucleated where the flux penetration is deepest. To check this prediction we do numerical simulations on a superconducting rectangle. We find that at low substrate temperature the first avalanches appear exactly in the middle of the long edges, in agreement with the predictions. At higher substrate temperature, where there are no clear predictions from the theory, we find that the location of the first avalanche is decided by fluctuations due to the randomly distributed disorder.Comment: 3 pages, 2 figure

    Diversity of flux avalanche patterns in superconducting films

    Full text link
    The variety of morphologies in flux patterns created by thermomagnetic dendritic avalanches in type-II superconducting films is investigated using numerical simulations. The avalanches are triggered by introducing a hot spot at the edge of a strip-shaped sample, which is initially prepared in a partially penetrated Bean critical state by slowly ramping the transversely applied magnetic field. The simulation scheme is based on a model accounting for the nonlinear and nonlocal electrodynamics of superconductors in the transverse geometry. By systematically varying the parameters representing the Joule heating, heat conduction in the film, and heat transfer to the substrate, a wide variety of avalanche patterns is formed, and quantitative characterization of areal extension, branch width etc. is made. The results show that branching is suppressed by the lateral heat diffusion, while large Joule heating gives many branches, and heat removal into the substrate limits the areal size. The morphology shows significant dependence also on the initial flux penetration depth.Comment: 6 pages, 6 figure

    Dramatic role of critical current anisotropy on flux avalanches in MgB2 films

    Full text link
    Anisotropic penetration of magnetic flux in MgB2 films grown on vicinal sapphire substrates is investigated using magneto-optical imaging. Regular penetration above 10 K proceeds more easily along the substrate surface steps, anisotropy of the critical current being 6%. At lower temperatures the penetration occurs via abrupt dendritic avalanches that preferentially propagate {\em perpendicular} to the surface steps. This inverse anisotropy in the penetration pattern becomes dramatic very close to 10 K where all flux avalanches propagate in the strongest-pinning direction. The observed behavior is fully explained using a thermomagnetic model of the dendritic instability.Comment: 4 pages, 5 figure

    Ray optics in flux avalanche propagation in superconducting films

    Get PDF
    Experimental evidence of wave properties of dendritic flux avalanches in superconducting films is reported. Using magneto-optical imaging the propagation of dendrites across boundaries between a bare NbN film and areas coated by a Cu-layer was visualized, and it was found that the propagation is refracted in full quantitative agreement with Snell's law. For the studied film of 170 nm thickness and a 0.9 mkm thick metal layer, the refractive index was close to n=1.4. The origin of the refraction is believed to be caused by the dendrites propagating as an electromagnetic shock wave, similar to damped modes considered previously for normal metals. The analogy is justified by the large dissipation during the avalanches raising the local temperature significantly. Additional time-resolved measurements of voltage pulses generated by segments of the dendrites traversing an electrode confirm the consistency of the adapted physical picture.Comment: 4 pages, 4 figure
    • …
    corecore