42 research outputs found

    Transcription of Candidate Virulence Genes of Haemophilus ducreyi during Infection of Human Volunteers

    No full text
    Haemophilus ducreyi expresses several putative virulence factors in vitro. Isogenic mutant-to-parent comparisons have been performed in a human model of experimental infection to examine whether specific gene products are involved in pathogenesis. Several mutants (momp, ftpA, losB, lst, cdtC, and hhdB) were as virulent as the parent in the human model, suggesting that their gene products did not play a major role in pustule formation. However, we could not exclude the possibility that the gene of interest was not expressed during the initial stages of infection. Biopsies of pustules obtained from volunteers infected with H. ducreyi were subjected to reverse transcription-PCR. Transcripts corresponding to momp, ftpA, losB, lst, cdtB, and hhdA were expressed in vivo. In addition, transcripts for other putative virulence determinants such as ompA2, tdhA, lspA1, and lspA2 were detected in the biopsies. These results indicate that although several candidate virulence determinants are expressed during experimental infection, they do not have a major role in the initial stages of pathogenesis

    Cloning, Overexpression, Purification, and Immunobiology of an 85-Kilodalton Outer Membrane Protein from Haemophilus ducreyi

    Get PDF
    We have identified an 85-kDa outer membrane protein that is expressed by all tested strains of Haemophilus ducreyi. Studies of related proteins from other pathogenic bacteria, including Haemophilus influenzae, Pasteurella multocida, Neisseria gonorrhoeae, Neisseria meningitidis, and Shigella dysenteriae, suggested a role for these proteins in pathogenesis and immunity. In keeping with the first such described protein from Haemophilus influenzae type B, we termed the H. ducreyi protein D15. The gene encoding the H. ducreyi D15 protein was cloned and sequenced, and the deduced amino acid sequence was found to be most similar to sequences of the D15-related proteins from other Pasteurella spp. The arrangement of the flanking genes was similar to that of H. influenzae Rd and suggested that D15 was part of a multigene operon. Attempts to make a null mutation of the D15 gene were unsuccessful, paralleling results in other D15 gene studies. Overexpression of H. ducreyi D15 in Escherichia coli resulted in a source of recombinant D15 (rD15) from which it was readily purified. rD15 was immunogenic, and it was found that immunization of rabbits with an rD15 vaccine preparation conferred partial protection against a virulent challenge infection. Antisera to an N-terminal peptide recognized all tested strains of H. ducreyi
    corecore