2,232 research outputs found
Analysis of longitudinal bunching inan FEL driven two-beam accelerator
Recent experiments [1] have explored the use of a free-electron laser (FEL)
as a buncher for a microwave two-beam accelerator, and the subsequent driving
of a standing-wave rf output cavity. Here we present a deeper analysis of the
longitudinal dynamics of the electron bunches as they are transported from the
end of the FEL and through the output cavity. In particular, we examine the
effect of the transport region and cavity aperture to filter the bunched
portion of the beam.
[1] T. Lefevre, et. al., Phys. Rev. Lett. 84 (2000), 1188.Comment: 3 pages, 8 figures. Submitted to XX Int'l LINAC Conferenc
Transverse momentum dependence of the angular distribution of the Drell-Yan process
We calculate the transverse momentum Q_{\perp} dependence of the helicity
structure functions for the hadroproduction of a massive pair of leptons with
pair invariant mass Q. These structure functions determine the angular
distribution of the leptons in the pair rest frame. Unphysical behavior in the
region Q_{\perp} --> 0 is seen in the results of calculations done at
fixed-order in QCD perturbation theory. We use current conservation to
demonstrate that the unphysical inverse-power and \ln(Q/Q_{\perp}) logarithmic
divergences in three of the four independent helicity structure functions share
the same origin as the divergent terms in fixed-order calculations of the
angular-integrated cross section. We show that the resummation of these
divergences to all orders in the strong coupling strength \alpha_s can be
reduced to the solved problem of the resummation of the divergences in the
angular-integrated cross section, resulting in well-behaved predictions in the
small Q_{\perp} region. Among other results, we show the resummed part of the
helicity structure functions preserves the Lam-Tung relation between the
longitudinal and double spin-flip structure functions as a function of
Q_{\perp} to all orders in \alpha_s.Comment: 18 pages, 4 figures; typos corrected, references updated, a few
clarifications recommended by the referee. Paper accepted for publication in
Physical Review
Above- and belowground herbivory jointly impact defense and seed dispersal traits in Taraxacum officinale
Plants are able to cope with herbivores by inducing defensive traits or growth responses that allow them to reduce or avoid the impact of herbivores. Since above- and belowground herbivores differ substantially in life-history traits, for example feeding types, and their spatial distribution, it is likely that they induce different responses in plants. Moreover, strong interactive effects on defense and plant growth are expected when above- and belowground herbivores are jointly present. The strengths and directions of these responses have been scarcely addressed in the literature. Using Taraxacum officinale, the root-feeding nematode Meloidogyne hapla and the locust Schistocerca gregaria as a model species, we examined to what degree above- and belowground herbivory affect (1) plant growth responses, (2) the induction of plant defensive traits, that is, leaf trichomes, and (3) changes in dispersal-related seed traits and seed germination. We compared the performance of plants originating from different populations to address whether plant responses are conserved across putative different genotypes. Overall, aboveground herbivory resulted in increased plant biomass. Root herbivory had no effect on plant growth. Plants exposed to the two herbivores showed fewer leaf trichomes than plants challenged only by one herbivore and consequently experienced greater aboveground herbivory. In addition, herbivory had effects that reached beyond the individual plant by modifying seed morphology, producing seeds with longer pappus, and germination success
Axial anomaly and magnetism of nuclear and quark matter
We consider the response of the QCD ground state at finite baryon density to
a strong magnetic field B. We point out the dominant role played by the
coupling of neutral Goldstone bosons, such as pi^0, to the magnetic field via
the axial triangle anomaly. We show that, in vacuum, above a value of B ~
m_pi^2/e, a metastable object appears - the pi^0 domain wall. Because of the
axial anomaly, the wall carries a baryon number surface density proportional to
B. As a result, for B ~ 10^{19} G a stack of parallel pi^0 domain walls is
energetically more favorable than nuclear matter at the same density.
Similarly, at higher densities, somewhat weaker magnetic fields of order B ~
10^{17}-10^{18} G transform the color-superconducting ground state of QCD into
new phases containing stacks of axial isoscalar (eta or eta') domain walls. We
also show that a quark-matter state known as ``Goldstone current state,'' in
which a gradient of a Goldstone field is spontaneously generated, is
ferromagnetic due to the axial anomaly. We estimate the size of the fields
created by such a state in a typical neutron star to be of order
10^{14}-10^{15} G.Comment: 18 pages, v2: added a discussion of the energy cost of neutralizing
the domain wall charg
Million-atom molecular dynamics simulation by order-N electronic structure theory and parallel computation
Parallelism of tight-binding molecular dynamics simulations is presented by
means of the order-N electronic structure theory with the Wannier states,
recently developed (J. Phys. Soc. Jpn. 69,3773 (2000)). An application is
tested for silicon nanocrystals of more than millions atoms with the
transferable tight-binding Hamiltonian. The efficiency of parallelism is
perfect, 98.8 %, and the method is the most suitable to parallel computation.
The elapse time for a system of atoms is 3.0 minutes by a
computer system of 64 processors of SGI Origin 3800. The calculated results are
in good agreement with the results of the exact diagonalization, with an error
of 2 % for the lattice constant and errors less than 10 % for elastic
constants.Comment: 5 pages, 3 figure
Mott-Superfluid transition in bosonic ladders
We show that in a commensurate bosonic ladder, a quantum phase transition
occurs between a Mott insulator and a superfluid when interchain hopping
increases. We analyse the properties of such a transition as well as the
physical properties of the two phases. We discuss the physical consequences for
experimental systems such as Josephson Junction arrays.Comment: 4 pages, 2 figures, revtex
Tight-binding study of high-pressure phase transitions in titanium: alpha to omega and beyond
We use a tight-binding total energy method, with parameters determined from a
fit to first-principles calculations, to examine the newly discovered gamma
phase of titanium. Our parameters were adjusted to accurately describe the
alpha Ti-omega Ti phase transition, which is misplaced by density functional
calculations. We find a transition from omega Ti to gamma Ti at 102 GPa, in
good agreement with the experimental value of 116 GPa. Our results suggest that
current density functional calculations will not reproduce the omega Ti-gamma
Ti phase transition, but will instead predict a transition from omega Ti to the
bcc beta Ti phase.Comment: 3 encapsulated Postscript figures, submitted to Phyical Review
Letter
Evaluating Exposure of Northern Fur Seals, Callorhinus Ursinus, to Microplastic Pollution Through Fecal Analysis
Environmental microplastics are widely documented in marine life and bioaccumulation may present risks to marine predators. Investigations of microplastics in marine mammals are increasing, though none have examined animals routinely consumed by humans. Here, we investigate microplastic exposure in the northern fur seal (Callorhinus ursinus), a species consumed by humans, using fecal material. We examined 44 feces (scat) at sites encompassing the seals\u27 eastern Pacific range. Multiple contamination control measures were implemented, including field and laboratory controls. Fragments were the most common microplastic recovered, in 55% (24/44) of scat and no controls (range 1 to 86 fragments/scat, mean 16.6, sd 19.1). Microplastic fibers were recovered from 41% of scats (18/44), though some controls contained fibers confounding fiber results. Fecal analysis documented northern fur seal exposure to microplastics throughout their eastern Pacific range. © 201
Effect of pressure on the Raman modes of antimony
The effect of pressure on the zone-center optical phonon modes of antimony in
the A7 structure has been investigated by Raman spectroscopy. The A_g and E_g
frequencies exhibit a pronounced softening with increasing pressure, the effect
being related to a gradual suppression of the Peierls-like distortion of the A7
phase relative to a cubic primitive lattice. Also, both Raman modes broaden
significantly under pressure. Spectra taken at low temperature indicate that
the broadening is at least partly caused by phonon-phonon interactions. We also
report results of ab initio frozen-phonon calculations of the A_g and E_g mode
frequencies. Presence of strong anharmonicity is clearly apparent in calculated
total energy versus atom displacement relations. Pronounced nonlinearities in
the force versus displacement relations are observed. Structural instabilities
of the Sb-A7 phase are briefly addressed in the Appendix.Comment: 10 pages, 8 figure
Intrinsic transverse momentum and the polarized Drell-Yan process
In this paper we study the cross section at leading order in for
polarized Drell-Yan scattering at measured lepton-pair transverse momentum
. We find that for a hadron with spin the quark content at leading
order is described by six distribution functions for each flavor, which depend
on both the lightcone momentum fraction , and the quark transverse momentum
\bbox{k}_T^2. These functions are illustrated for a free-quark ensemble. The
cross sections for both longitudinal and transverse polarizations are expressed
in terms of convolution integrals over the distribution functions.Comment: 25 pages, REVTEX 3.0 (3 figures included in separate LATEX file using
feynman.tex), NIKHEF-94-P1 (Revised version
- …