2,019 research outputs found
Co-ordination between Rashba spin-orbital interaction and space charge effect and enhanced spin injection into semiconductors
We consider the effect of the Rashba spin-orbital interaction and space
charge in a ferromagnet-insulator/semiconductor/insulator-ferromagnet junction
where the spin current is severely affected by the doping, band structure and
charge screening in the semiconductor. In diffusion region, if the the
resistance of the tunneling barriers is comparable to the semiconductor
resistance, the magnetoresistance of this junction can be greatly enhanced
under appropriate doping by the co-ordination between the Rashba effect and
screened Coulomb interaction in the nonequilibrium transport processes within
Hartree approximation.Comment: 4 pages, 3 figure
Symmetric-Asymmetric transition in mixtures of Bose-Einstein condensates
We propose a new kind of quantum phase transition in phase separated mixtures
of Bose-Einstein condensates. In this transition, the distribution of the two
components changes from a symmetric to an asymmetric shape. We discuss the
nature of the phase transition, the role of interface tension and the phase
diagram. The symmetric to asymmetric transition is the simplest quantum phase
transition that one can imagine. Careful study of this problem should provide
us new insight into this burgeoning field of discovery.Comment: 6 pages, 3 eps figure
Heat Capacity of ^3He in Aerogel
The heat capacity of pure ^3He in low density aerogel is measured at 22.5
bar. The superfluid response is simultaneously monitored with a torsional
oscillator. A slightly rounded heat capacity peak, 65 mu K in width, is
observed at the ^3He-aerogel superfluid transition, T_{ca}. Subtracting the
bulk ^3He contribution, the heat capacity shows a Fermi-liquid form above
T_{ca}. The heat capacity attributed to superfluid within the aerogel can be
fit with a rounded BCS form, and accounts for 0.30 of the non-bulk fluid in the
aerogel, indicating a substantial reduction in the superfluid order parameter
consistent with earlier superfluid density measurements.Comment: 4 pages, 5 figure
Dynamical Properties of a Growing Surface on a Random Substrate
The dynamics of the discrete Gaussian model for the surface of a crystal
deposited on a disordered substrate is investigated by Monte Carlo simulations.
The mobility of the growing surface was studied as a function of a small
driving force and temperature . A continuous transition is found from
high-temperature phase characterized by linear response to a low-temperature
phase with nonlinear, temperature dependent response. In the simulated regime
of driving force the numerical results are in general agreement with recent
dynamic renormalization group predictions.Comment: 10 pages, latex, 3 figures, to appear in Phys. Rev. E (RC
Two Stages in the evolution of binary alkali Bose-Einstein condensate mixtures towards phase segregation
Two stages of quantum spinodal decomposition is proposed and analyzed for
this highly non-equilibrium process. Both time and spatial scales for the
process are found. Qualitative agreement with existing data is found. Some
cases the agreements are quantitative. Further experimental verifications are
indicated.Comment: late
Phase separation and vortex states in binary mixture of Bose-Einstein condensates in the trapping potentials with displaced centers
The system of two simultaneously trapped codensates consisting of
atoms in two different hyperfine states is investigated theoretically in the
case when the minima of the trapping potentials are displaced with respect to
each other. It is shown that the small shift of the minima of the trapping
potentials leads to the considerable displacement of the centers of mass of the
condensates, in agreement with the experiment. It is also shown that the
critical angular velocities of the vortex states of the system drastically
depend on the shift and the relative number of particles in the condensates,
and there is a possibility to exchange the vortex states between condensates by
shifting the centers of the trapping potentials.Comment: 4 pages, 2 figure
Kinetic Roughening in Surfaces of Crystals Growing on Disordered Substrates
Substrate disorder effects on the scaling properties of growing crystalline
surfaces in solidification or epitaxial deposition processes are investigated.
Within the harmonic approach there is a phase transition into a low-temperature
(low-noise) superrough phase with a continuously varying dynamic exponent z>2
and a non-linear response. In the presence of the KPZ nonlinearity the disorder
causes the lattice efects to decay on large scales with an intermediate
crossover behavior. The mobility of the rough surface hes a complex dependence
on the temperature and the other physical parameters.Comment: 13 pages, 2 figures (not included). Submitted to Phys. Rev. Letts.
Use Latex twic
Glassy Roughness of a Crystalline Surface Upon a Disordered Substrate
The discrete Gaussian model for the surface of a crystal deposited on a
disordered substrate is studied by Monte Carlo simulations. A continuous
transition is found from a phase with a thermally-induced roughness to a glassy
one in which the roughness is driven by the disorder. The behavior of the
height-height correlations is consistent with the one-step replica symmetry
broken solution of the variational approximation. The results differ from the
renormalization group predictions and from recent simulations of a 2D
vortex-glass model which belongs to the same universality class.Comment: 12 pages (RevTeX) & 3 figures (PS) uuencode
- …