18 research outputs found
Dose and time relations in Hg(++)-induced tubular necrosis and regeneration.
Mercuric chloride is a well-known human and animal nephrotoxicant. Previous studies have demonstrated an inverse relationship between dose size and relative whole-body retention of mercury after oral administration of mercuric chloride to mice. The present study indicates that this inverse relationship is caused by a dose-related induction of kidney damage leading to increasing leakage of mercury through the kidneys. Histopathologic investigation revealed extensive necrosis of the proximal tubules in kidneys from mice exposed to 100 mumole HgCl2/kg or higher doses. Moreover, maximum renal damage occurred between days 2 and 3 after administration. The renal damage was followed by regeneration, which was observed between days 3 and 7 at increasing dose levels up to 100 mumole HgCl2/kg. The amount of glutathione and the glutathione peroxidase activity in kidney decreased with increasing doses of mercuric chloride. The reduced glutathione peroxidase activity was due to a reduction in selenium-dependent glutathione peroxidase activity. The level of lipid peroxidation was not changed by increasing doses of mercuric chloride, and hence was not a primary toxic mechanism in acute nephrotoxicity induced by mercuric chloride
Increased renal sodium absorption by inhibition of prostaglandin synthesis during fasting in healthy man. A possible role of the epithelial sodium channels
<p>Abstract</p> <p>Background</p> <p>Treatment with prostaglandin inhibitors can reduce renal function and impair renal water and sodium excretion. We tested the hypotheses that a reduction in prostaglandin synthesis by ibuprofen treatment during fasting decreased renal water and sodium excretion by increased absorption of water and sodium via the aquaporin2 water channels and the epithelial sodium channels.</p> <p>Methods</p> <p>The effect of ibuprofen, 600 mg thrice daily, was measured during fasting in a randomized, placebo-controlled, double-blinded crossover study of 17 healthy humans. The subjects received a standardized diet on day 1, fasted at day 2, and received an IV infusion of 3% NaCl on day 3. The effect variables were urinary excretions of aquaporin2 (u-AQP2), the beta-fraction of the epithelial sodium channel (u-ENaCbeta), cyclic-AMP (u-cAMP), prostaglandin E2 (u-PGE2). Free water clearance (CH2O), fractional excretion of sodium (FENa), and plasma concentrations of vasopressin, angiotensin II, aldosterone, atrial-, and brain natriuretic peptide.</p> <p>Results</p> <p>Ibuprofen decreased u-AQP2, u-PGE2, and FENa at all parts of the study. During the same time, ibuprofen significantly increased u-ENaCbeta. Ibuprofen did not change the response in p-AVP, u-c-AMP, urinary output, and free water clearance during any of these periods. Atrial-and brain natriuretic peptide were higher.</p> <p>Conclusion</p> <p>During inhibition of prostaglandin synthesis, urinary sodium excretion decreased in parallel with an increase in sodium absorption and increase in u-ENaCbeta. U-AQP2 decreased indicating that water transport via AQP2 fell. The vasopressin-c-AMP-axis did not mediate this effect, but it may be a consequence of the changes in the natriuretic peptide system and/or the angiotensin-aldosterone system</p> <p>Trial Registration</p> <p>Clinical Trials Identifier: NCT00281762</p
Abnormal function of the vasopressin-cyclic-AMP-aquaporin2 axis during urine concentrating and diluting in patients with reduced renal function. A case control study
<p>Abstract</p> <p>Background</p> <p>The kidneys ability to concentrate and dilute urine is deteriorated during progressive renal insufficiency. We wanted to test the hypothesis that these phenomena could be attributed to an abnormal function of the principal cells in the distal part of the nephron.</p> <p>Methods</p> <p>Healthy control subjects and patients with chronic kidney diseases were studied. Group 1 comprised healthy subjects, n = 10. Groups 2-4 comprised patients with chronic kidney disease (Group 2, n = 14, e-GFR ? 90 m1/min; Group 3, n = 11, 60 m1/min ? e-GFR < 90 ml/min; and Group 4, n = 16, 15 ml/min ? e-GFR < 60 ml/min). The subjects collected urine during 24 hours. A urine concentrating test was done by thirsting during the following 12 hours. Thereafter, a urine diluting test was performed with a water load of 20 ml/kg body weight. The effect variables were urinary excretions of aquaporin2 (u-AQP2), cyclic-AMP (u-c-AMP), urine volume (UV), free water clearance (C<sub>H2O</sub>), urine osmolarity (u-Osm), and plasma arginine vasopressin (p-AVP).</p> <p>Results</p> <p>After fluid deprivation, u-Osm increased. In all groups, UV and C<sub>H2O </sub>decreased and u-AQP2 and u-c-AMP increased in Groups 1 and 2, but were unchanged in Group 3 and 4. P-AVP was significantly higher in Group 4 than in the other groups. During urine diluting, UV and C<sub>H2O </sub>reached significantly higher levels in Groups 1-3 than Group 4. Both before and after water loading, u-AQP2 and p-AVP were significantly higher and u-c-AMP was significantly lower in Group 4 than the other groups. Estimated-GFR was correlated negatively to p-AVP and positively to u-c-AMP.</p> <p>Conclusions</p> <p>Patients with moderately severe chronic kidney disease have a reduced renal concentrating and diluting capacity compared to both patients with milder chronic kidney disease and healthy control subjects. These phenomena can be attributed, at least partly, to an abnormally decreased response in the AVP-c-AMP-AQP2 axis.</p> <p>ClinicalTrials.Gov Identifier: NCT00313430</p