1,118 research outputs found
Strongly coupled fluid-particle flows in vertical channels. II. Turbulence modeling
In Part I, simulations of strongly coupled fluid-particle flow in a vertical channel were performed with the purpose of understanding, in general, the fundamental physics of wall-bounded multiphase turbulence and, in particular, the roles of the spatially correlated and uncorrelated components of the particle velocity.The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions were presented, and the unclosed terms that are retained in the context of fully developed channel flow were evaluated in an Eulerian–Lagrangian (EL) framework. Here, data from the EL simulations are used to validate a multiphase Reynolds-stress model (RSM) that predicts the wall-normal distribution of the two-phase, one-point turbulence statistics up to second order. It is shown that the anisotropy of the Reynolds stresses both near the wall and far away is a crucial component for predicting the distribution of the RA particle-phase volume fraction. Moreover, the decomposition of the phase-average (PA) particle-phase fluctuating energy into the spatially correlated and uncorrelated components is necessary to account for the boundary conditions at the wall. When these factors are properly accounted for in the RSM, the agreement with the EL turbulence statistics is satisfactory at first order (e.g., PA velocities) but less so at second order (e.g., PA turbulent kinetic energy). Finally, an algebraic stress model for the PA particle-phase pressure tensor and the Reynolds stresses is derived from the RSM using the weak-equilibrium assumption
Kondo Quantum Dots and the Novel Kondo-doublet interaction
We analyze the interactions between two Kondo Quantum Dots connected to a
Rashba-active Quantum Wire. We find that the Kondo-doublet interaction, at an
inter-dot distance of the order of the wire Fermi length, is over an order of
magnitude greater than the RKKY interaction. The effects induced on the
Kondo-doublet interaction by the wire spin-orbit coupling can be used to
control the Quantum Dots spin-spin correlation. These results imply that the
widely used assumption that the RKKY is the dominant interaction between
Anderson impurities must be revised.Comment: 4 pages, 4 figs, accepted for publication in PRL. title changed and
text polishe
Simulation of a particle-laden turbulent channel flow using an improved stochastic Lagrangian model
The purpose of this paper is to examine the Lagrangian stochastic modeling of
the fluid velocity seen by inertial particles in a nonhomogeneous turbulent
flow. A new Langevin-type model, compatible with the transport equation of the
drift velocity in the limits of low and high particle inertia, is derived. It
is also shown that some previously proposed stochastic models are not
compatible with this transport equation in the limit of high particle inertia.
The drift and diffusion parameters of these stochastic differential equations
are then estimated using direct numerical simulation (DNS) data. It is observed
that, contrary to the conventional modeling, they are highly space dependent
and anisotropic. To investigate the performance of the present stochastic
model, a comparison is made with DNS data as well as with two different
stochastic models. A good prediction of the first and second order statistical
moments of the particle and fluid seen velocities is obtained with the three
models considered. Even for some components of the triple particle velocity
correlations, an acceptable accordance is noticed. The performance of the three
different models mainly diverges for the particle concentration and the drift
velocity. The proposed model is seen to be the only one which succeeds in
predicting the good evolution of these latter statistical quantities for the
range of particle inertia studied
- …