2,626 research outputs found
Longitudinal Dynamics in High-Frequency FFAG Recirculating Accelerators
A recirculating accelerator accelerates the beam by passing through accelerating cavities multiple times. An FFAG recirculating accelerator uses a single arc to connect the linacs together, as opposed to multiple arcs for the different energies. For most scenarios using high-frequency RF, it is impractical to change the phase of the RF on each pass, at least for lower energy accelerators. Ideally, therefore, the WAG arc will be isochronous, so that the particles come back to the same phase (on-crest) on each linac pass. However, it is not possible to make the FFAG arcs isochronous (compared to the RF period) over a large energy range. This paper demonstrates that one can nonetheless make an WAG recirculating accelerator work. Given the arc's path length as a function of energy and the number of turns to accelerate for, one can find the minimum voltage (and corresponding initial conditions) required to accelerate a reference particle to the desired energy. I also briefly examine how the longitudinal acceptance varies with the number of turns that one accelerates
On the Wang-Landau Method for Off-Lattice Simulations in the "Uniform" Ensemble
We present a rigorous derivation for off-lattice implementations of the
so-called "random-walk" algorithm recently introduced by Wang and Landau [PRL
86, 2050 (2001)]. Originally developed for discrete systems, the algorithm
samples configurations according to their inverse density of states using
Monte-Carlo moves; the estimate for the density of states is refined at each
simulation step and is ultimately used to calculate thermodynamic properties.
We present an implementation for atomic systems based on a rigorous separation
of kinetic and configurational contributions to the density of states. By
constructing a "uniform" ensemble for configurational degrees of freedom--in
which all potential energies, volumes, and numbers of particles are equally
probable--we establish a framework for the correct implementation of simulation
acceptance criteria and calculation of thermodynamic averages in the continuum
case. To demonstrate the generality of our approach, we perform sample
calculations for the Lennard-Jones fluid using two implementation variants and
in both cases find good agreement with established literature values for the
vapor-liquid coexistence locus.Comment: 21 pages, 4 figure
A Complete Scheme of Ionization Cooling for a Muon Collider
A complete scheme for production and cooling a muon beam for three specified
muon colliders is presented. Parameters for these muon colliders are given. The
scheme starts with the front end of a proposed neutrino factory that yields
bunch trains of both muon signs. Emittance exchange cooling in slow helical
lattices reduces the longitudinal emittance until it becomes possible to merge
the trains into single bunches, one of each sign. Further cooling in all
dimensions is applied to the single bunches in further slow helical lattices.
Final transverse cooling to the required parameters is achieved in 50 T
solenoids using high Tc superconductor at 4 K. Preliminary simulations of each
element are presented.Comment: 3 pages, 6 figure
Exact Results for the Bipartite Entanglement Entropy of the AKLT spin-1 chain
We study the entanglement between two domains of a spin-1 AKLT chain subject
to open boundary conditions. In this case the ground-state manifold is
four-fold degenerate. We summarize known results and present additional exact
analytical results for the von Neumann entanglement entropy, as a function of
both the size of the domains and the total system size for {\it all} four
degenerate ground-states. In the large limit the entanglement entropy
approaches and for the and states,
respectively. In all cases, it is found that this constant is approached
exponentially fast defining a length scale equal to the known
bulk correlation length.Comment: 11 pages, 3 figure
Balance Assessment Using a Smartwatch Inertial Measurement Unit with Principal Component Analysis for Anatomical Calibration
Balance assessment, or posturography, tracks and prevents health complications for a variety of groups with balance impairment, including the elderly population and patients with traumatic brain injury. Wearables can revolutionize state-of-the-art posturography methods, which have recently shifted focus to clinical validation of strictly positioned inertial measurement units (IMUs) as replacements for force-plate systems. Yet, modern anatomical calibration (i.e., sensor-to-segment alignment) methods have not been utilized in inertial-based posturography studies. Functional calibration methods can replace the need for strict placement of inertial measurement units, which may be tedious or confusing for certain users. In this study, balance-related metrics from a smartwatch IMU were tested against a strictly placed IMU after using a functional calibration method. The smartwatch and strictly placed IMUs were strongly correlated in clinically relevant posturography scores (r = 0.861–0.970, p \u3c 0.001). Additionally, the smartwatch was able to detect significant variance (p \u3c 0.001) between pose-type scores from the mediolateral (ML) acceleration data and anterior-posterior (AP) rotation data. With this calibration method, a large problem with inertial-based posturography has been addressed, and wearable, “at-home” balance-assessment technology is within possibility
- …