1,123 research outputs found

    Structural and magnetic properties of [\lbrackErTb]\rbrackmultilayers

    Get PDF
    Abstract.: We have investigated the structural and magnetic properties of [\lbrack Er|Tb ]\rbrack multilayers by different scattering methods. Diffuse X-ray scattering under grazing incidence reveals the interface structure in [\lbrack Er|Tb ]\rbrack bilayers and trilayers, indicating vertically correlated roughness between the Er and Tb interfaces. The magnetic properties of [\lbrack ErnEr|TbnTb ]\rbrack superlattices have been studied as a function of the superlattice composition (indices denote the number of atomic layers). Coupled ferromagnetic structures exist in all investigated samples. The phase transition temperature varies with the Tb layer thickness. Modulated magnetic order is short range for all samples beside the [\lbrack Er20|Tb5 ]\rbrack superlattice, the sample with the smallest Tb layer thickness. We observe dipolar antiferromagnetic coupling between single ferromagnetic Tb layers in all samples, with the onset of this ordering depending on the Tb layer thickness. Due to competing interactions, exchange coupling is limited to the interface near region. Therefore long range modulated magnetic order is observed in the [\lbrack Er20|Tb5 ]\rbrack superlattice only, where the interface regions overlap. The distinct differences to the magnetic structure of an Er0.8Tb0.2 alloy film are explained by a highly anisotropic arrangement of neighbouring atoms due to the correlated roughnes

    The dynamical evolution of the circumstellar gas around low-and intermediate-mass stars I: the AGB

    Get PDF
    We have investigated the dynamical interaction of low- and-intermediate mass stars (from 1 to 5 Msun) with their interstellar medium (ISM). In this first paper, we examine the structures generated by the stellar winds during the Asymptotic Giant Branch (AGB) phase, using a numerical code and the wind history predicted by stellar evolution. The influence of the external ISM is also taken into account. We find that the wind variations associated with the thermal pulses lead to the formation of transient shells with an average lifetime of 20,000 yr, and consequently do not remain recorded in the density or velocity structure of the gas. The formation of shells that survive at the end of the AGB occurs via two main processes: shocks between the shells formed by two consecutive enhancements of the mass-loss or via continuous accumulation of the material ejected by the star in the interaction region with the ISM. Our models show that the mass of the circumstellar envelope increases appreciably due to the ISM material swept up by the wind (up to 70 % for the 1 Msun stellar model). We also point out the importance of the ISM on the deceleration and compression of the external shells. According to our simulations, large regions (up to 2.5 pc) of neutral gas surrounding the molecular envelopes of AGB stars are expected. These large regions of gas are formed from the mass-loss experienced by the star during the AGB evolution.Comment: 43 pages, 15 figures. Accepted for publication in the Astrophysical Journa

    X-ray modelling of galaxy cluster gas and mass profiles

    Full text link
    We present a parametric analysis of the intracluster medium and gravitating mass distribution of a statistical sample of 20 galaxy clusters using the phenomenological cluster model of Ascasibar and Diego. We describe an effective scheme for the estimation of errors on model parameters and derived quantities using bootstrap resampling. We find that the model provides a good description of the data in all cases and we quantify the mean fractional intrinsic scatter about the best-fit density and temperature profiles, finding this to have median values across the sample of 2 and 5 per cent, respectively. In addition, we demonstrate good agreement between r500 determined directly from the model and that estimated from a core-excluded global spectrum. We compare cool core and non-cool core clusters in terms of the logarithmic slopes of their gas density and temperature profiles and the distribution of model parameters and conclude that the two categories are clearly separable. In particular, we confirm the effectiveness of the logarithmic gradient of the gas density profile measured at 0.04 r500 in differentiating between the two types of cluster.Comment: 8 pages, 7 figures, accepted for publication in MNRA

    The Complexity of Flat Freeze LTL

    Get PDF
    We consider the model-checking problem for freeze LTL on one-counter automata (OCAs). Freeze LTL extends LTL with the freeze quantifier, which allows one to store different counter values of a run in registers so that they can be compared with one another. As the model-checking problem is undecidable in general, we focus on the flat fragment of freeze LTL, in which the usage of the freeze quantifier is restricted. Recently, Lechner et al. showed that model checking for flat freeze LTL on OCAs with binary encoding of counter updates is decidable and in 2NEXPTIME. In this paper, we prove that the problem is, in fact, NEXPTIME-complete no matter whether counter updates are encoded in unary or binary. Like Lechner et al., we rely on a reduction to the reachability problem in OCAs with parameterized tests (OCAPs). The new aspect is that we simulate OCAPs by alternating two-way automata over words. This implies an exponential upper bound on the parameter values that we exploit towards an NP algorithm for reachability in OCAPs with unary updates. We obtain our main result as a corollary

    Constraining interactions mediated by axion-like particles with ultracold neutrons

    Get PDF
    We report a new limit on a possible short range spin-dependent interaction from the precise measurement of the ratio of Larmor precession frequencies of stored ultracold neutrons and 199^{199}Hg atoms confined in the same volume. The measurement was performed in a \sim1μ\mu T vertical magnetic holding field with the apparatus searching for a permanent electric dipole moment of the neutron at the Paul Scherrer Institute. A possible coupling between freely precessing polarized neutron spins and unpolarized nucleons of the wall material can be investigated by searching for a tiny change of the precession frequencies of neutron and mercury spins. Such a frequency change can be interpreted as a consequence of a short range spin-dependent interaction that could possibly be mediated by axions or axion-like particles. The interaction strength is proportional to the CP violating product of scalar and pseudoscalar coupling constants gSgPg_Sg_P. Our result confirms limits from complementary experiments with spin-polarized nuclei in a model-independent way. Limits from other neutron experiments are improved by up to two orders of magnitude in the interaction range of 106<λ<10410^{-6}<\lambda<10^{-4} m

    Inverse remodelling of K2P3.1 K+ channel expression and action potential duration in left ventricular dysfunction and atrial fibrillation: implications for patient-specific antiarrhythmic drug therapy

    Get PDF
    AIMS: Atrial fibrillation (AF) prevalence increases with advanced stages of left ventricular (LV) dysfunction. Remote proarrhythmic effects of ventricular dysfunction on atrial electrophysiology remain incompletely understood. We hypothesized that repolarizing K2P3.1 K+ channels, previously implicated in AF pathophysiology, may contribute to shaping the atrial action potential (AP), forming a specific electrical substrate with LV dysfunction that might represent a target for personalized antiarrhythmic therapy. METHODS AND RESULTS: A total of 175 patients exhibiting different stages of LV dysfunction were included. Ion channel expression was quantified by real-time polymerase chain reaction and Western blot. Membrane currents and APs were recorded from atrial cardiomyocytes using the patch-clamp technique. Severely reduced LV function was associated with decreased atrial K2P3.1 expression in sinus rhythm patients. In contrast, chronic (c)AF resulted in increased K2P3.1 levels, but paroxysmal (p)AF was not linked to significant K2P3.1 remodelling. LV dysfunction-related suppression of K2P3.1 currents prolonged atrial AP duration (APD) compared with patients with preserved LV function. In individuals with concomitant LV dysfunction and cAF, APD was determined by LV dysfunction-associated prolongation and by cAF-dependent shortening, respectively, consistent with changes in K2P3.1 abundance. K2P3.1 inhibition attenuated APD shortening in cAF patients irrespective of LV function, whereas in pAF subjects with severely reduced LV function, K2P3.1 blockade resulted in disproportionately high APD prolongation. CONCLUSION: LV dysfunction is associated with reduction of atrial K2P3.1 channel expression, while cAF leads to increased K2P3.1 abundance. Differential remodelling of K2P3.1 and APD provides a basis for patient-tailored antiarrhythmic strategies

    Hybrid Characteristics: 3D radiative transfer for parallel adaptive mesh refinement hydrodynamics

    Get PDF
    We have developed a three-dimensional radiative transfer method designed specifically for use with parallel adaptive mesh refinement hydrodynamics codes. This new algorithm, which we call hybrid characteristics, introduces a novel form of ray tracing that can neither be classified as long, nor as short characteristics, but which applies the underlying principles, i.e. efficient execution through interpolation and parallelizability, of both. Primary applications of the hybrid characteristics method are radiation hydrodynamics problems that take into account the effects of photoionization and heating due to point sources of radiation. The method is implemented in the hydrodynamics package FLASH. The ionization, heating, and cooling processes are modelled using the DORIC ionization package. Upon comparison with the long characteristics method, we find that our method calculates the column density with a similarly high accuracy and produces sharp and well defined shadows. We show the quality of the new algorithm in an application to the photoevaporation of multiple over-dense clumps. We present several test problems demonstrating the feasibility of our method for performing high resolution three-dimensional radiation hydrodynamics calculations that span a large range of scales. Initial performance tests show that the ray tracing part of our method takes less time to execute than other parts of the calculation (e.g. hydrodynamics and adaptive mesh refinement), and that a high degree of efficiency is obtained in parallel execution. Although the hybrid characteristics method is developed for problems involving photoionization due to point sources, the algorithm can be easily adapted to the case of more general radiation fields.Comment: 15 pages, 15 figures, submitted to A&

    Measurement of the permanent electric dipole moment of the neutron

    Get PDF
    We present the result of an experiment to measure the electric dipole moment EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons (UCN). Our measurement stands in the long history of EDM experiments probing physics violating time reversal invariance. The salient features of this experiment were the use of a Hg-199 co-magnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic field changes. The statistical analysis was performed on blinded datasets by two separate groups while the estimation of systematic effects profited from an unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is d_{\rm n} = (0.0\pm1.1_{\rm stat}\pm0.2_{\rmsys})\times10^{-26}e\,{\rm cm}

    The X-ray luminous cluster underlying the bright radio-quiet quasar H1821+643

    Full text link
    We present a Chandra observation of the only low redshift, z=0.299, galaxy cluster to contain a highly luminous radio-quiet quasar, H1821+643. By simulating the quasar PSF, we subtract the quasar contribution from the cluster core and determine the physical properties of the cluster gas down to 3 arcsec (15 kpc) from the point source. The temperature of the cluster gas decreases from 9.0\pm0.5 keV down to 1.3\pm0.2 keV in the centre, with a short central radiative cooling time of 1.0\pm0.1 Gyr, typical of a strong cool-core cluster. The X-ray morphology in the central 100 kpc shows extended spurs of emission from the core, a small radio cavity and a weak shock or cold front forming a semi-circular edge at 15 arcsec radius. The quasar bolometric luminosity was estimated to be 2 x 10^{47} erg per sec, requiring a mass accretion rate of 40 Msolar per yr, which corresponds to half the Eddington accretion rate. We explore possible accretion mechanisms for this object and determine that Bondi accretion, when boosted by Compton cooling of the accretion material, could provide a significant source of the fuel for this outburst. We consider H1821+643 in the context of a unified AGN accretion model and, by comparing H1821+643 with a sample of galaxy clusters, we show that the quasar has not significantly affected the large-scale cluster gas properties.Comment: 20 pages, 19 figures, accepted by MNRA
    corecore