1,123 research outputs found
Structural and magnetic properties of ErTbmultilayers
Abstract.: We have investigated the structural and magnetic properties of Er|Tb multilayers by different scattering methods. Diffuse X-ray scattering under grazing incidence reveals the interface structure in Er|Tb bilayers and trilayers, indicating vertically correlated roughness between the Er and Tb interfaces. The magnetic properties of ErnEr|TbnTb superlattices have been studied as a function of the superlattice composition (indices denote the number of atomic layers). Coupled ferromagnetic structures exist in all investigated samples. The phase transition temperature varies with the Tb layer thickness. Modulated magnetic order is short range for all samples beside the Er20|Tb5 superlattice, the sample with the smallest Tb layer thickness. We observe dipolar antiferromagnetic coupling between single ferromagnetic Tb layers in all samples, with the onset of this ordering depending on the Tb layer thickness. Due to competing interactions, exchange coupling is limited to the interface near region. Therefore long range modulated magnetic order is observed in the Er20|Tb5 superlattice only, where the interface regions overlap. The distinct differences to the magnetic structure of an Er0.8Tb0.2 alloy film are explained by a highly anisotropic arrangement of neighbouring atoms due to the correlated roughnes
The dynamical evolution of the circumstellar gas around low-and intermediate-mass stars I: the AGB
We have investigated the dynamical interaction of low- and-intermediate mass
stars (from 1 to 5 Msun) with their interstellar medium (ISM). In this first
paper, we examine the structures generated by the stellar winds during the
Asymptotic Giant Branch (AGB) phase, using a numerical code and the wind
history predicted by stellar evolution. The influence of the external ISM is
also taken into account. We find that the wind variations associated with the
thermal pulses lead to the formation of transient shells with an average
lifetime of 20,000 yr, and consequently do not remain recorded in the density
or velocity structure of the gas. The formation of shells that survive at the
end of the AGB occurs via two main processes: shocks between the shells formed
by two consecutive enhancements of the mass-loss or via continuous accumulation
of the material ejected by the star in the interaction region with the ISM. Our
models show that the mass of the circumstellar envelope increases appreciably
due to the ISM material swept up by the wind (up to 70 % for the 1 Msun stellar
model). We also point out the importance of the ISM on the deceleration and
compression of the external shells. According to our simulations, large regions
(up to 2.5 pc) of neutral gas surrounding the molecular envelopes of AGB stars
are expected. These large regions of gas are formed from the mass-loss
experienced by the star during the AGB evolution.Comment: 43 pages, 15 figures. Accepted for publication in the Astrophysical
Journa
X-ray modelling of galaxy cluster gas and mass profiles
We present a parametric analysis of the intracluster medium and gravitating
mass distribution of a statistical sample of 20 galaxy clusters using the
phenomenological cluster model of Ascasibar and Diego. We describe an effective
scheme for the estimation of errors on model parameters and derived quantities
using bootstrap resampling. We find that the model provides a good description
of the data in all cases and we quantify the mean fractional intrinsic scatter
about the best-fit density and temperature profiles, finding this to have
median values across the sample of 2 and 5 per cent, respectively. In addition,
we demonstrate good agreement between r500 determined directly from the model
and that estimated from a core-excluded global spectrum. We compare cool core
and non-cool core clusters in terms of the logarithmic slopes of their gas
density and temperature profiles and the distribution of model parameters and
conclude that the two categories are clearly separable. In particular, we
confirm the effectiveness of the logarithmic gradient of the gas density
profile measured at 0.04 r500 in differentiating between the two types of
cluster.Comment: 8 pages, 7 figures, accepted for publication in MNRA
The Complexity of Flat Freeze LTL
We consider the model-checking problem for freeze LTL on one-counter automata (OCAs). Freeze LTL extends LTL with the freeze quantifier, which allows one to store different counter values of a run in registers so that they can be compared with one another. As the model-checking problem is undecidable in general, we focus on the flat fragment of freeze LTL, in which the usage of the freeze quantifier is restricted. Recently, Lechner et al. showed that model checking for flat freeze LTL on OCAs with binary encoding of counter updates is decidable and in 2NEXPTIME. In this paper, we prove that the problem is, in fact, NEXPTIME-complete no matter whether counter updates are encoded in unary or binary. Like Lechner et al., we rely on a reduction to the reachability problem in OCAs with parameterized tests (OCAPs). The new aspect is that we simulate OCAPs by alternating two-way automata over words. This implies an exponential upper bound on the parameter values that we exploit towards an NP algorithm for reachability in OCAPs with unary updates. We obtain our main result as a corollary
Constraining interactions mediated by axion-like particles with ultracold neutrons
We report a new limit on a possible short range spin-dependent interaction
from the precise measurement of the ratio of Larmor precession frequencies of
stored ultracold neutrons and Hg atoms confined in the same volume. The
measurement was performed in a 1 T vertical magnetic holding field
with the apparatus searching for a permanent electric dipole moment of the
neutron at the Paul Scherrer Institute. A possible coupling between freely
precessing polarized neutron spins and unpolarized nucleons of the wall
material can be investigated by searching for a tiny change of the precession
frequencies of neutron and mercury spins. Such a frequency change can be
interpreted as a consequence of a short range spin-dependent interaction that
could possibly be mediated by axions or axion-like particles. The interaction
strength is proportional to the CP violating product of scalar and pseudoscalar
coupling constants . Our result confirms limits from complementary
experiments with spin-polarized nuclei in a model-independent way. Limits from
other neutron experiments are improved by up to two orders of magnitude in the
interaction range of m
Inverse remodelling of K2P3.1 K+ channel expression and action potential duration in left ventricular dysfunction and atrial fibrillation: implications for patient-specific antiarrhythmic drug therapy
AIMS: Atrial fibrillation (AF) prevalence increases with advanced stages of left ventricular (LV) dysfunction. Remote proarrhythmic effects of ventricular dysfunction on atrial electrophysiology remain incompletely understood. We hypothesized that repolarizing K2P3.1 K+ channels, previously implicated in AF pathophysiology, may contribute to shaping the atrial action potential (AP), forming a specific electrical substrate with LV dysfunction that might represent a target for personalized antiarrhythmic therapy. METHODS AND RESULTS: A total of 175 patients exhibiting different stages of LV dysfunction were included. Ion channel expression was quantified by real-time polymerase chain reaction and Western blot. Membrane currents and APs were recorded from atrial cardiomyocytes using the patch-clamp technique. Severely reduced LV function was associated with decreased atrial K2P3.1 expression in sinus rhythm patients. In contrast, chronic (c)AF resulted in increased K2P3.1 levels, but paroxysmal (p)AF was not linked to significant K2P3.1 remodelling. LV dysfunction-related suppression of K2P3.1 currents prolonged atrial AP duration (APD) compared with patients with preserved LV function. In individuals with concomitant LV dysfunction and cAF, APD was determined by LV dysfunction-associated prolongation and by cAF-dependent shortening, respectively, consistent with changes in K2P3.1 abundance. K2P3.1 inhibition attenuated APD shortening in cAF patients irrespective of LV function, whereas in pAF subjects with severely reduced LV function, K2P3.1 blockade resulted in disproportionately high APD prolongation. CONCLUSION: LV dysfunction is associated with reduction of atrial K2P3.1 channel expression, while cAF leads to increased K2P3.1 abundance. Differential remodelling of K2P3.1 and APD provides a basis for patient-tailored antiarrhythmic strategies
Hybrid Characteristics: 3D radiative transfer for parallel adaptive mesh refinement hydrodynamics
We have developed a three-dimensional radiative transfer method designed
specifically for use with parallel adaptive mesh refinement hydrodynamics
codes. This new algorithm, which we call hybrid characteristics, introduces a
novel form of ray tracing that can neither be classified as long, nor as short
characteristics, but which applies the underlying principles, i.e. efficient
execution through interpolation and parallelizability, of both. Primary
applications of the hybrid characteristics method are radiation hydrodynamics
problems that take into account the effects of photoionization and heating due
to point sources of radiation. The method is implemented in the hydrodynamics
package FLASH. The ionization, heating, and cooling processes are modelled
using the DORIC ionization package. Upon comparison with the long
characteristics method, we find that our method calculates the column density
with a similarly high accuracy and produces sharp and well defined shadows. We
show the quality of the new algorithm in an application to the photoevaporation
of multiple over-dense clumps. We present several test problems demonstrating
the feasibility of our method for performing high resolution three-dimensional
radiation hydrodynamics calculations that span a large range of scales. Initial
performance tests show that the ray tracing part of our method takes less time
to execute than other parts of the calculation (e.g. hydrodynamics and adaptive
mesh refinement), and that a high degree of efficiency is obtained in parallel
execution. Although the hybrid characteristics method is developed for problems
involving photoionization due to point sources, the algorithm can be easily
adapted to the case of more general radiation fields.Comment: 15 pages, 15 figures, submitted to A&
Measurement of the permanent electric dipole moment of the neutron
We present the result of an experiment to measure the electric dipole moment EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons (UCN). Our measurement stands in the long history of EDM experiments probing physics violating time reversal invariance. The salient features of this experiment
were the use of a Hg-199 co-magnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic field changes. The statistical analysis was performed on blinded datasets by two separate groups while the estimation of systematic effects profited from an
unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is d_{\rm n} = (0.0\pm1.1_{\rm stat}\pm0.2_{\rmsys})\times10^{-26}e\,{\rm cm}
The X-ray luminous cluster underlying the bright radio-quiet quasar H1821+643
We present a Chandra observation of the only low redshift, z=0.299, galaxy
cluster to contain a highly luminous radio-quiet quasar, H1821+643. By
simulating the quasar PSF, we subtract the quasar contribution from the cluster
core and determine the physical properties of the cluster gas down to 3 arcsec
(15 kpc) from the point source. The temperature of the cluster gas decreases
from 9.0\pm0.5 keV down to 1.3\pm0.2 keV in the centre, with a short central
radiative cooling time of 1.0\pm0.1 Gyr, typical of a strong cool-core cluster.
The X-ray morphology in the central 100 kpc shows extended spurs of emission
from the core, a small radio cavity and a weak shock or cold front forming a
semi-circular edge at 15 arcsec radius. The quasar bolometric luminosity was
estimated to be 2 x 10^{47} erg per sec, requiring a mass accretion rate of 40
Msolar per yr, which corresponds to half the Eddington accretion rate. We
explore possible accretion mechanisms for this object and determine that Bondi
accretion, when boosted by Compton cooling of the accretion material, could
provide a significant source of the fuel for this outburst. We consider
H1821+643 in the context of a unified AGN accretion model and, by comparing
H1821+643 with a sample of galaxy clusters, we show that the quasar has not
significantly affected the large-scale cluster gas properties.Comment: 20 pages, 19 figures, accepted by MNRA
- …