1,573 research outputs found

    A brief summary of the attempts to develop large wind-electric generating systems in the US

    Get PDF
    Interest in developing large wind-electric generating systems in the United States was simulated primarily by one man, Palmer C. Putnam. He was responsible for the construction of the 1250 kilowatt Smith-Putnam wind-electric plant. The existence of this system prompted the U. S. Federal Power Commission to investigate the potential of using the winds as a source energy. Also, in 1933 prior to Putnam's effort, there was an abortive attempt by J. D. Madaras to develop a wind system based on the Magnus effect. These three projects comprise the only serious efforts in America to develop large wind driven plants. In this paper the history of each project is briefly described. Also discussed are some of the reasons why wind energy was not seriously considered as a major source of energy for the U. S

    A method for predicting interfacial freezing of a liquid flowing over a cold surface

    Get PDF
    Instantaneous thickness of a frozen layer is a function of specific heat, heat of fusion, temperatures, the frozen layer thickness at equilibrium, the thermal conductivity, and heat transfer coefficient. The equation can be evaluated on a desk calculator

    Simulated fuel assembly Patent

    Get PDF
    Simulated fuel assembly-type flow measurement apparatus for coolant flow in reactor cor

    Summary of tower designs for large horizontal axis wind turbines

    Get PDF
    Towers for large horizontal axis wind turbines, machines with a rotor axis height above 30 meters and rated at more than 500 kW, have varied in configuration, materials of construction, type of construction, height, and stiffness. For example, the U.S. large HAWTs have utilized steel truss type towers and free-standing steel cylindrical towers. In Europe, the trend has been to use only free-standing and guyed cylindrical towers, but both steel and reinforced concrete have been used as materials of construction. These variations in materials of construction and type of construction reflect different engineering approaches to the design of cost effective towers for large HAWTs. Tower designs are the NASA/DOE Mod-5B presently being fabricated. Design goals and requirements that influence tower configuration, height and materials are discussed. In particular, experiences with United States large wind turbine towers are elucidated. Finally, current trends in tower designs for large HAWTs are highlighted

    Experimental profiles of velocity components and radial pressure distributions in a vortex contained in a short cylindrical chamber

    Get PDF
    Velocity components and radial pressure distributions in vortex contained in short cylindrical chambe

    Status of wind-energy conversion

    Get PDF
    The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems; a sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to: (1) fossil fuel systems; (2) hydroelectric systems; or (3) dispersing them throughout a large grid network. Wind energy appears to have the potential to meet a significant amount of our energy needs

    Effect of rotor configuration on guyed tower and foundation designs and estimated costs for intermediate site horizontal axis wind turbines

    Get PDF
    Three designs of a guyed cylindrical tower and its foundation for an intermediate size horizontal axis wind turbine generator are discussed. The primary difference in the three designs is the configuration of the rotor. Two configurations are two-blade rotors with teetering hubs - one with full span pitchable blades, the other with fixed pitch blades. The third configuration is a three-bladed rotor with a rigid hub and fixed pitch blades. In all configurations the diameter of the rotor is 38 meters and the axis of rotation is 30.4 meters above grade, and the power output is 200 kW and 400 kW. For each configuration the design is based upon for the most severe loading condition either operating wind or hurricane conditions. The diameter of the tower is selected to be 1.5 meters (since it was determined that this would provide sufficient space for access ladders within the tower) with guy rods attached at 10.7 meters above grade. Completing a design requires selecting the required thicknesses of the various cylindrical segments, the number and diameter of the guy rods, the number and size of soil anchors, and the size of the central foundation. The lower natural frequencies of vibration are determined for each design to ensure that operation near resonance does not occur. Finally, a cost estimate is prepared for each design. A preliminary design and cost estimate of a cantilever tower (cylindrical and not guyed) and its foundation is also presented for each of the three configurations

    Autonomous Watercraft Simulation and Programming

    Get PDF
    Automation of various modes of transportation is thought to make travel more safe and efficient. Over the past several decades advances to semi-autonomous and autonomous vehicles have led to advanced autopilot systems on planes and boats and an increasing popularity of self-driving cars. We simulated the motion of an autonomous vehicle using computational models. The simulation models the motion of a small-scale watercraft, which can then be built and programmed using an Arduino Microcontroller. We examined different control methods for a simulated rescue craft to reach a target. We also examined the effects of different factors, such as various biases (which would be analogous to a current of water) and various initial separation distances, on the time it takes the simulated rescue craft to reach the target. The simulations suggested that it is most efficient to continually correct the direction of the simulated rescue craft for movement of the target when the object is moving at random. We predict that these simulations can model not only the small-scale watercraft but also full-size boats. Self-driving technology used here can be applicable in search-and-rescue missions where conditions may be too harsh for human-controlled watercraft and impractical for remote-controlled watercraft. This experiment also raises new questions in methods of control that can utilize machine learning to detect patterns of a moving target

    An experimental 100 kilowatt wind turbine generator

    Get PDF
    Experimental generator consists of two blades mounted on 100 foot tower, driving transmission train and electric generator mounted on top of tower. Machine generates 100 kW of electricity at wind speeds from 18 to 60 miles per hour. Yaw control mechanism automatically orients machine into wind
    corecore