798 research outputs found

    Emergence of Hierarchy on a Network of Complementary Agents

    Full text link
    Complementarity is one of the main features underlying the interactions in biological and biochemical systems. Inspired by those systems we propose a model for the dynamical evolution of a system composed by agents that interact due to their complementary attributes rather than their similarities. Each agent is represented by a bit-string and has an activity associated to it; the coupling among complementary peers depends on their activity. The connectivity of the system changes in time respecting the constraint of complementarity. We observe the formation of a network of active agents whose stability depends on the rate at which activity diffuses in the system. The model exhibits a non-equilibrium phase transition between the ordered phase, where a stable network is generated, and a disordered phase characterized by the absence of correlation among the agents. The ordered phase exhibits multi-modal distributions of connectivity and activity, indicating a hierarchy of interaction among different populations characterized by different degrees of activity. This model may be used to study the hierarchy observed in social organizations as well as in business and other networks.Comment: 13 pages, 4 figures, submitte

    Sharp gene pool transition in a population affected by phenotype-based selective hunting

    Full text link
    We use a microscopic model of population dynamics, a modified version of the well known Penna model, to study some aspects of microevolution. This research is motivated by recent reports on the effect of selective hunting on the gene pool of bighorn sheep living in the Ram Mountain region, in Canada. Our model finds a sharp transition in the structure of the gene pool as some threshold for the number of animals hunted is reached.Comment: 5 pages, 4 figure

    Complex networks generated by the Penna bit-string model: emergence of small-world and assortative mixing

    Get PDF
    The Penna bit-string model successfully encompasses many phenomena of population evolution, including inheritance, mutation, evolution, and aging. If we consider social interactions among individuals in the Penna model, the population will form a complex network. In this paper, we first modify the Verhulst factor to control only the birth rate, and introduce activity-based preferential reproduction of offspring in the Penna model. The social interactions among individuals are generated by both inheritance and activity-based preferential increase. Then we study the properties of the complex network generated by the modified Penna model. We find that the resulting complex network has a small-world effect and the assortative mixing property

    Simulation of Demographic Change in Palestinian Territories

    Get PDF
    Mortality, birth rates and retirement play a major role in demographic changes. In most cases, mortality rates decreased in the past century without noticeable decrease in fertility rates, this leads to a significant increase in population growth. In many poor countries like Palestinian territories the number of births has fallen and the life expectancy increased. In this article we concentrate on measuring, analyzing and extrapolating the age structure in Palestine a few decades ago into future. A Fortran program has been designed and used for the simulation and analysis of our statistical data. This study of demographic change in Palestine has shown that Palestinians will have in future problems as the strongest age cohorts are the above-60-year olds. We therefore recommend the increase of both the retirement age and women employment.Comment: For Int. J. Mod. Phys. C 18, issue 11; 9 pages including figures and progra

    Simulated ecology-driven sympatric speciation

    Full text link
    We introduce a multi-locus genetically acquired phenotype, submitted to mutations and with selective value, in an age-structured model for biological aging. This phenotype describes a single-trait effect of the environment on an individual, and we study the resulting distribution of this trait among the population. In particular, our simulations show that the appearance of a double phenotypic attractor in the ecology induces the emergence of a stable polymorphism, as observed in the Galapagos finches. In the presence of this polymorphism, the simulations generate short-term speciation, when mating preferences are also allowed to suffer mutations and acquire selective value.Comment: 11 pages, 5 figures, 1 table, uses package RevTe

    Simulations of a mortality plateau in the sexual Penna model for biological ageing

    Full text link
    The Penna model is a strategy to simulate the genetic dynamics of age-structured populations, in which the individuals genomes are represented by bit-strings. It provides a simple metaphor for the evolutionary process in terms of the mutation accumulation theory. In its original version, an individual dies due to inherited diseases when its current number of accumulated mutations, n, reaches a threshold value, T. Since the number of accumulated diseases increases with age, the probability to die is zero for very young ages (n = T). Here, instead of using a step function to determine the genetic death age, we test several other functions that may or may not slightly increase the death probability at young ages (n < T), but that decreases this probability at old ones. Our purpose is to study the oldest old effect, that is, a plateau in the mortality curves at advanced ages. Imposing certain conditions, it has been possible to obtain a clear plateau using the Penna model. However, a more realistic one appears when a modified version, that keeps the population size fixed without fluctuations, is used. We also find a relation between the birth rate, the age-structure of the population and the death probability.Comment: submitted to Phys. Rev.

    Lattice Simulation of Nuclear Multifragmentation

    Full text link
    Motivated by the decade-long debate over the issue of criticality supposedly observed in nuclear multifragmentation, we propose a dynamical lattice model to simulate the phenomenon. Its Ising Hamiltonian mimics a short range attractive interaction which competes with a thermal-like dissipative process. The results here presented, generated through an event-by-event analysis, are in agreement with both experiment and those produced by a percolative (non-dynamical) model.Comment: 8 pages, 3 figure

    Absorbing-state phase transitions with extremal dynamics

    Full text link
    Extremal dynamics represents a path to self-organized criticality in which the order parameter is tuned to a value of zero. The order parameter is associated with a phase transition to an absorbing state. Given a process that exhibits a phase transition to an absorbing state, we define an ``extremal absorbing" process, providing the link to the associated extremal (nonabsorbing) process. Stationary properties of the latter correspond to those at the absorbing-state phase transition in the former. Studying the absorbing version of an extremal dynamics model allows to determine certain critical exponents that are not otherwise accessible. In the case of the Bak-Sneppen (BS) model, the absorbing version is closely related to the "ff-avalanche" introduced by Paczuski, Maslov and Bak [Phys. Rev. E {\bf 53}, 414 (1996)], or, in spreading simulations to the "BS branching process" also studied by these authors. The corresponding nonextremal process belongs to the directed percolation universality class. We revisit the absorbing BS model, obtaining refined estimates for the threshold and critical exponents in one dimension. We also study an extremal version of the usual contact process, using mean-field theory and simulation. The extremal condition slows the spread of activity and modifies the critical behavior radically, defining an ``extremal directed percolation" universality class of absorbing-state phase transitions. Asymmetric updating is a relevant perturbation for this class, even though it is irrelevant for the corresponding nonextremal class.Comment: 24 pages, 11 figure
    corecore