19,951 research outputs found
D-branes in the diagonal SU(2) coset
The symmetry preserving D-branes in coset theories have previously been
described as being centered around projections of products of conjugacy classes
in the underlying Lie groups. Here, we investigate the coset where a diagonal
action of SU(2) is divided out from SU(2)\times SU(2). The corresponding target
space is described as a (3-dimensional) pillow with four distinguished corners.
It is shown that the (fractional) brane which corresponds to the fixed point
that arises in the CFT description, is spacefilling. Moreover, the spacefilling
brane is the only one that reaches all of the corners. The other branes are 3,
1 and 0 - dimensional.Comment: v2: reference added, 9 page
Performance of the LHCb High Level Trigger in 2012
The trigger system of the LHCb experiment is discussed in this paper and its
performance is evaluated on a dataset recorded during the 2012 run of the LHC.
The main purpose of the LHCb trigger system is to separate heavy flavour
signals from the light quark background. The trigger reduces the roughly 11MHz
of bunch-bunch crossings with inelastic collisions to a rate of 5kHz, which is
written to storage.Comment: Proceedings for the 20th International Conference on Computing in
High Energy and Nuclear Physics (CHEP
Radiobiological studies with monoenergetic neutrons
The Radiological Research Accelerator Facility (RARAF) has the capability of
producing essentially monoenergetic neutron beams, ranging in energy from 16.4 MeV
down to 220 keV. In addition, two lower energy neutron beams are available which
consist of a wide spectrum of energies and are described as the 110 keV and 60 keV
spectra. Seedlings of Vicia faba have been used to measure the oxygen enhancement
ratio (OER) and the relative biological effectiveness (RBE) of each of these neutron
beams. The OER decreases as the neutron energy is reduced between 15.4 MeV and
220 keV, but does not appear to decrease further for lower energy neutrons. RBE increases
as the neutron energy is reduced from 15.4 AleV to 440 keV; the curve then
goes through a maximum at around 350 keV, and for lower energies the RBE falls again
Locating Overlap Information in Quantum Systems
When discussing the black hole information problem the term ``information
flow'' is frequently used in a rather loose fashion. In this article I attempt
to make this notion more concrete. I consider a Hilbert space which is
constructed as a tensor product of two subspaces (representing for example
inside and outside the black hole). I discuss how the system has the capacity
to contain information which is in NEITHER of the subspaces. I attempt to
quantify the amount of information located in each of the two subspaces, and
elsewhere, and analyze the extent to which unitary evolution can correspond to
``information flow''. I define the notion of ``overlap information'' which
appears to be well suited to the problem.Comment: 25 pages plain LaTeX, no figures. Imperial/TP/93-94/2
Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity
We demonstrate a single-photon collection efficiency of from
a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon
purity of recorded above the saturation power. The high
efficiency is directly confirmed by detecting up to kilocounts per
second on a single-photon detector on another quantum dot coupled to the cavity
mode. The high collection efficiency is found to be broadband, as is explained
by detailed numerical simulations. Cavity-enhanced efficient excitation of
quantum dots is obtained through phonon-mediated excitation and under these
conditions, single-photon indistinguishability measurements reveal long
coherence times reaching ns in a weak-excitation regime. Our work
demonstrates that photonic crystals provide a very promising platform for
highly integrated generation of coherent single photons including the efficient
out-coupling of the photons from the photonic chip.Comment: 13 pages, 8 figures, submitte
Electromechanical coupling in free-standing AlGaN/GaN planar structures
The strain and electric fields present in free-standing AlGaN/GaN slabs are
examined theoretically within the framework of fully-coupled continuum elastic
and dielectric models. Simultaneous solutions for the electric field and strain
components are obtained by minimizing the electric enthalpy. We apply
constraints appropriate to pseudomorphic semiconductor epitaxial layers and
obtain closed-form analytic expressions that take into account the wurtzite
crystal anisotropy. It is shown that in the absence of free charges, the
calculated strain and electric fields are substantially differently from those
obtained using the standard model without electromechanical coupling. It is
also shown, however, that when a two-dimensional electron gas is present at the
AlGaN/GaN interface, a condition that is the basis for heterojunction
field-effect transistors, the electromechanical coupling is screened and the
decoupled model is once again a good approximation. Specific cases of these
calculations corresponding to transistor and superlattice structures are
discussed.Comment: revte
- …