2,492 research outputs found

    Whispering Gallery States of Antihydrogen

    Full text link
    We study theoretically interference of the long-living quasistationary quantum states of antihydrogen atoms, localized near a concave material surface. Such states are an antimatter analog of the whispering gallery states of neutrons and matter atoms, and similar to the whispering gallery modes of sound and electro-magnetic waves. Quantum states of antihydrogen are formed by the combined effect of quantum reflection from van der Waals/Casimir-Polder (vdW/CP) potential of the surface and the centrifugal potential. We point out a method for precision studies of quantum reflection of antiatoms from vdW/CP potential; this method uses interference of the whispering gallery states of antihydrogen.Comment: 13 pages 7 figure

    High speed imaging of traveling waves in a granular material during silo discharge

    Full text link
    We report experimental observations of sound waves in a granular material during resonant silo discharge called silo music. The grain motion was tracked by high speed imaging while the resonance of the silo was detected by accelerometers and acoustic methods. The grains do not oscillate in phase at neighboring vertical locations, but information propagates upward in this system in the form of sound waves. We show that the wave velocity is not constant throughout the silo, but considerably increases towards the lower end of the system, suggesting increased pressure in this region, where the flow changes from cylindrical to converging flow. In the upper part of the silo the wave velocity matches the sound velocity measured in the same material when standing (in the absence of flow). Grain oscillations show a stick-slip character only in the upper part of the silo.Comment: 5 pages, 5 figures, accepted to Phys. Rev.

    Asymmetric Wave Propagation in Nonlinear Systems

    Full text link
    A mechanism for asymmetric (nonreciprocal) wave transmission is presented. As a reference system, we consider a layered nonlinear, non mirror-symmetric model described by the one-dimensional Discrete Nonlinear Schreodinger equation with spatially varying coefficients embedded in an otherwise linear lattice. We construct a class of exact extended solutions such that waves with the same frequency and incident amplitude impinging from left and right directions have very different transmission coefficients. This effect arises already for the simplest case of two nonlinear layers and is associated with the shift of nonlinear resonances. Increasing the number of layers considerably increases the complexity of the family of solutions. Finally, numerical simulations of asymmetric wavepacket transmission are presented which beautifully display the rectifying effect

    Many-body wave scattering by small bodies

    Full text link
    Scattering problem by several bodies, small in comparison with the wavelength, is reduced to linear algebraic systems of equations, in contrast to the usual reduction to some integral equations

    Diacritical study of light, electrons, and sound scattering by particles and holes

    Get PDF
    We discuss the differences and similarities in the interaction of scalar and vector wave-fields with particles and holes. Analytical results are provided for the transmission of isolated and arrayed small holes as well as surface modes in hole arrays for light, electrons, and sound. In contrast to the optical case, small-hole arrays in perforated perfect screens cannot produce acoustic or electronic surface-bound states. However, unlike electrons and light, sound is transmitted through individual holes approximately in proportion to their area, regardless their size. We discuss these issues with a systematic analysis that allows exploring both common properties and unique behavior in wave phenomena for different material realizations.Comment: 3 figure

    Coupled Ripplon-Plasmon Modes in a Multielectron Bubble

    Full text link
    In multielectron bubbles, the electrons form an effectively two-dimensional layer at the inner surface of the bubble in helium. The modes of oscillation of the bubble surface (the ripplons) are influenced by the charge redistribution of the electrons along the surface. The dispersion relation for these charge redistribution modes (`longitudinal plasmons') is derived and the coupling of these modes to the ripplons is analysed. We find that the ripplon-plasmon coupling in a multielectron bubble differs markedly from that of electrons a flat helium surface. An equation is presented relating the spherical harmonic components of the charge redistribution to those of the shape deformation of the bubble.Comment: 8 pages, 1 figure, E-mail addresses: [email protected], [email protected], [email protected], [email protected]

    Quantum Reciprocity Conjecture for the Non-Equilibrium Steady State

    Full text link
    By considering the lack of history dependence in the non-equilibrium steady state of a quantum system we are led to conjecture that in such a system, there is a set of quantum mechanical observables whose retarded response functions are insensitive to the arrow of time, and which consequently satisfy a quantum analog of the Onsager reciprocity relations. Systems which satisfy this conjecture can be described by an effective Free energy functional. We demonstrate that the conjecture holds in a resonant level model of a multi-lead quantum dot.Comment: References revised to take account of related work on Onsager reciprocity in mesoscopics by Christen, and in hydrodynamics by Mclennan, Dufty and Rub

    Ion-induced nucleation in polar one-component fluids

    Get PDF
    We present a Ginzburg-Landau theory of ion-induced nucleation in a gas phase of polar one-component fluids, where a liquid droplet grows with an ion at its center. By calculating the density profile around an ion, we show that the solvation free energy is larger in gas than in liquid at the same temperature on the coexistence curve. This difference much reduces the nucleation barrier in a metastable gas.Comment: 9 pagers, 9 figures, to be published in J. Chem. Phy

    Nature of acoustic nonlinear radiation stress

    Get PDF
    When a fluid is insonified with ultrasound, a flow consequence of a net stress becomes observable, which has been described as acoustic streaming, quartz wind, acoustic radiation force or acoustic fountain. Following Sir James Lighthill's formulation of the Reynold's streaming, these phenomena have been attributed to a cumulative viscous effect. Instead, a new multiscale effect, whereby the constitutive elastic nonlinearity scales from the ultrasonic to the macroscopic time, is here proposed and formulated to explain its origin. This raises a new term in the Navier-Stokes equation, which ultimately stems from the anharmonicity of the atomic potential. In our experimental validation, this theory is consistent in water and for a range of ultrasonic configurations, whereas the formerly established viscous theory fails by an order of magnitude. This ultrasonic-fluid interaction, called nonlinear mechanical radiation since it is able to remotely exert a stress field, correctly explains a wide range of industrial and biomedical active ultrasonic uses including jet engines, acoustic tweezers, cyanobacteria propulsion mechanisms, nanofluidics or acoustic radiation force elastography.Ministerio de Economía y Competitividad (Spain) for Project DPI2010-17065, and Junta de Andalucía for Projects P11-CTS-8089 and GGI3000IDIB

    The complement: a solution to liquid drop finite size effects in phase transitions

    Full text link
    The effects of the finite size of a liquid drop undergoing a phase transition are described in terms of the complement, the largest (but still mesoscopic) drop representing the liquid in equilibrium with the vapor. Vapor cluster concentrations, pressure and density from fixed mean density lattice gas (Ising) model calculations are explained in terms of the complement. Accounting for this finite size effect is key to determining the infinite nuclear matter phase diagram from experimental data.Comment: Four two column pages, four figures, two tables; accepted for publication in PR
    corecore