15 research outputs found

    Suppression of β1-adrenoceptor autoantibodies is involved in the antiarrhythmic effects of omega-3 fatty acids in male and female hypertensive rats

    Get PDF
    The arrhythmogenic potential of β1-adrenoceptor autoantibodies (β1-AA), as well as antiarrhythmic properties of omega-3 in heart diseases, have been reported while underlying mechanisms are poorly understood. We aimed to test our hypothesis that omega-3 (eicosapentaenoic acid-EPA, docosahexaenoic acid-DHA) may inhibit matrix metalloproteinase (MMP-2) activity to prevent cleavage of β1-AR and formation of β1-AA resulting in attenuation of pro-arrhythmic connexin-43 (Cx43) and protein kinase C (PKC) signaling in the diseased heart. We have demonstrated that the appearance and increase of β1-AA in blood serum of male and female 12-month-old spontaneously hypertensive rats (SHR) was associated with an increase of inducible ventricular fibrillation (VF) comparing to normotensive controls. In contrast, supplementation of hypertensive rats with omega-3 for two months suppressed β1-AA levels and reduced incidence of VF. Suppression of β1-AA was accompanied by a decrease of elevated myocardial MMP-2 activity, preservation of cardiac cell membrane integrity and Cx43 topology. Moreover, omega-3 abrogated decline in expression of total Cx43 as well as its phosphorylated forms at serine 368 along with PKC-ε, while decreased pro-fibrotic PKC-δ levels in hypertensive rat heart regardless the sex. The implication of MMP-2 in the action of omega-3 was also demonstrated in cultured cardiomyocytes in which desensitization of β1-AR due to permanent activation of β1-AR with isoproterenol was prevented by MMP-2 inhibitor or EPA. Collectively, these data support the notion that omega-3 via suppression of β1-AA mechanistically controlled by MMP-2 may attenuate abnormal of Cx43 and PKC signaling; thus, abolish arrhythmia substrate and protect rats with an advanced stage of hypertension from malignant arrhythmias

    Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection

    Full text link

    European Perspectives

    No full text

    Role of IgE-FcεR1 in Pathological Cardiac Remodeling and Dysfunction

    No full text

    (−)-Epicatechin Prevents Blood Pressure Increase and Reduces Locomotor Hyperactivity in Young Spontaneously Hypertensive Rats

    No full text
    This study investigated the effects of subchronic (−)-epicatechin (Epi) treatment on locomotor activity and hypertension development in young spontaneously hypertensive rats (SHR). Epi was administered in drinking water (100 mg/kg/day) for 2 weeks. Epi significantly prevented the development of hypertension (138±2 versus 169±5 mmHg, p<0.001) and reduced total distance traveled in the open-field test (22±2 versus 35±4 m, p<0.01). In blood, Epi significantly enhanced erythrocyte deformability, increased total antioxidant capacity, and decreased nitrotyrosine concentration. In the aorta, Epi significantly increased nitric oxide (NO) synthase (NOS) activity and elevated the NO-dependent vasorelaxation. In the left heart ventricle, Epi increased NOS activity without altering gene expressions of nNOS, iNOS, and eNOS. Moreover, Epi reduced superoxide production in the left heart ventricle and the aorta. In the brain, Epi increased nNOS gene expression (in the brainstem and cerebellum) and eNOS expression (in the cerebellum) but had no effect on overall NOS activity. In conclusion, Epi prevented the development of hypertension and reduced locomotor hyperactivity in young SHR. These effects resulted from improved cardiovascular NO bioavailability concurrently with increased erythrocyte deformability, without changes in NO production in the brain
    corecore