5,669 research outputs found
Recommended from our members
Influence of Laser Processing Parameters on the Corrosion Behavior in 316L Stainless Steel Laser Powder Depositions
Mechanical Engineerin
Formalism for obtaining nuclear momentum distributions by the Deep Inelastic Neutron Scattering technique
We present a new formalism to obtain momentum distributions in condensed
matter from Neutron Compton Profiles measured by the Deep Inelastic Neutron
Scattering technique. The formalism describes exactly the Neutron Compton
Profiles as an integral in the momentum variable . As a result we obtain a
Volterra equation of the first kind that relates the experimentally measured
magnitude with the momentum distributions of the nuclei in the sample. The
integration kernel is related with the incident neutron spectrum, the total
cross section of the filter analyzer and the detectors efficiency function. A
comparison of the present formalism with the customarily employed approximation
based on a convolution of the momentum distribution with a resolution function
is presented. We describe the inaccuracies that the use of this approximation
produces, and propose a new data treatment procedure based on the present
formalism.Comment: 11 pages, 8 figure
Recommended from our members
Effects of Process Variables and Size Scale on Solidification Microstructure in Laser-Based Solid Freeform Fabrication of Ti-6Al-4V
Mechanical Engineerin
ACE Data from the ACE Science Center
The purpose of the ACE Science Center (ASC) is to perform level 1 processing of data from the nine science instruments aboard the Advanced Composition Explorer (ACE) spacecraft and to facilitate access to all ACE data by both the instrument investigators and the space physics community. We describe the ACE data products available from the ASC and the methods by which users may access the data
STATISTICAL ANALYSIS OF FIELD WHEAT VARIETAL PERFORMANCE TRIALS
The purpose of this research was to formulate statistical models and assumptions to apply to the problem of comparing wheat varieties for yielding ability among locations within seasons and over seasons. The methodology could just as well be applied to field testing of other crops for yield or other characteristics of interest (test weight, protein level, etc.)
The methodology approaches the problem of comparing varieties by comparing how well each measures up when matched against some common checks. For each variety, the basic data are differences in yield between the variety and the average yield of the checks at different testing locations within a season and over seasons. The differences are assumed to be nature-randomized sample values from a population of differences created by different environments within seasons and over seasons.
The methodology is illustrated by application to hard red spring wheat varieties in the U. S. N orthem Plains. Results showing varieties in descending order by differential yielding ability, together with standard errors and probabilities when testing null hypotheses, provide a consolidated summary of elite varieties in testing programs
Recognition of DNA Termini by the C-Terminal Region of the Ku80 and the DNA-Dependent Protein Kinase Catalytic Subunit
DNA double strand breaks (DSBs) can be generated by endogenous cellular processes or exogenous agents in mammalian cells. These breaks are highly variable with respect to DNA sequence and structure and all are recognized in some context by the DNA-dependent protein kinase (DNA-PK). DNA-PK is a critical component necessary for the recognition and repair of DSBs via non-homologous end joining (NHEJ). Previously studies have shown that DNA-PK responds differentially to variations in DSB structure, but how DNA-PK senses differences in DNA substrate sequence and structure is unknown. Here we explore the enzymatic mechanisms by which DNA-PK is activated by various DNA substrates and provide evidence that the DNA-PK is differentially activated by DNA structural variations as a function of the C-terminal region of Ku80. Discrimination based on terminal DNA sequence variations, on the other hand, is independent of the Ku80 C-terminal interactions and likely results exclusively from DNA-dependent protein kinase catalytic subunit interactions with the DNA. We also show that sequence differences in DNA termini can drastically influence DNA repair through altered DNA-PK activation. These results indicate that even subtle differences in DNA substrates influence DNA-PK activation and ultimately the efficiency of DSB repair
Auroral Energy Input from Energetic Electrons and Joule Heating at Chatanika
With the incoherent scatter radar at Chatanika, Alaska, a wide variety of measurements can be made related to the ionosphere, magnetosphere, and neutral atmosphere. A significant parameter is the amount of energy transferred from the magnetosphere into the ionosphere and neutral atmosphere during periods of auroral activity. In this report we examine a procedure whereby the incident energy flux of auroral electrons is ascertained from radar measurements. As part of the process we compare radar-determined fluxes with those ascertained from simultaneous photometric observations at 4278 Å. The fluxes obtained by both techniques had similar magnitudes and time variations. If we assume that the largest uncertainty in the radar/photometer comparison is the effective recombination coefficient, then that coefficient can also be deduced. We find a value 3 × 10−7 cm³/s at about 105 km, which is in good agreement with other recent determinations during active auroral conditions. We then combine this technique with one to ascertain the Joule heating to determine the energy input from the magnetosphere to the ionosphere in a region localized above the radar on March 22, 1973, in the midnight sector. The energy input is continuous at a significant level, i.e., greater than the 3 ergs/cm² s that could be delivered by the sun, were it overhead. Moreover, at times, each of these inputs became as great as 30 ergs/cm² s
Xeroderma Pigmentosum Group C Deficiency Alters Cigarette Smoke DNA Damage Cell Fate and Accelerates Emphysema Development
Cigarette smoke (CS) exposure is a major risk factor for the development of emphysema, a common disease characterized by loss of cells comprising the lung parenchyma. The mechanisms of cell injury leading to emphysema are not completely understood but are thought to involve persistent cytotoxic or mutagenic DNA damage induced by CS. Using complementary cell culture and mouse models of CS exposure, we investigated the role of the DNA repair protein, xeroderma pigmentosum group C (XPC), on CS-induced DNA damage repair and emphysema. Expression of XPC was decreased in mouse lungs after chronic CS exposure and XPC knockdown in cultured human lung epithelial cells decreased their survival after CS exposure due to activation of the intrinsic apoptosis pathway. Similarly, cell autophagy and apoptosis were increased in XPC-deficient mouse lungs and were further increased by CS exposure. XPC deficiency was associated with structural and functional changes characteristic of emphysema, which were worsened by age, similar to levels observed with chronic CS exposure. Taken together, these findings suggest that repair of DNA damage by XPC plays an important and previously unrecognized role in the maintenance of alveolar structures. These findings support that loss of XPC, possibly due to chronic CS exposure, promotes emphysema development and further supports a link between DNA damage, impaired DNA repair, and development of emphysema
From Identification to Intelligence: An Assessment of the Suitability of Forensic DNA Phenotyping Service Providers for Use in Australian Law Enforcement Casework.
Forensic DNA Phenotyping (FDP) is an established but evolving field of DNA testing. It provides intelligence regarding the appearance (externally visible characteristics), biogeographical ancestry and age of an unknown donor and, although not necessarily a requirement for its casework application, has been previously used as a method of last resort in New South Wales (NSW) Police Force investigations. FDP can further assist law enforcement agencies by re-prioritising an existing pool of suspects or generating a new pool of suspects. In recent years, this capability has become ubiquitous with a wide range of service providers offering their expertise to law enforcement and the public. With the increase in the number of providers offering FDP and its potential to direct and target law enforcement resources, a thorough assessment of the applicability of these services was undertaken. Six service providers of FDP were assessed for suitability for NSW Police Force casework based on prediction accuracy, clarity of reporting, limitations of testing, cost and turnaround times. From these assessment criteria, a service provider for the prediction of biogeographical ancestry, hair and eye colour was deemed suitable for use in NSW Police Force casework. Importantly, the study highlighted the need for standardisation of terminology and reporting in this evolving field, and the requirement for interpretation by biologists with specialist expertise to translate the scientific data to intelligence for police investigators
- …