10,013 research outputs found
STS-40 orbital acceleration research experiment flight results during a typical sleep period
The Orbital Acceleration Research Experiment (OARE), an electrostatic accelerometer package with complete on-orbit calibration capabilities, was flown for the first time aboard the Space Shuttle on STS-40. This is also the first time an accelerometer package with nano-g sensitivity and a calibration facility has flown aboard the Space Shuttle. The instrument is designed to measure and record the Space Shuttle aerodynamic acceleration environment from the free molecule flow regime through the rarified flow transition into the hypersonic continuum regime. Because of its sensitivity, the OARE instrument defects aerodynamic behavior of the Space Shuttle while in low-earth orbit. A 2-hour orbital time period on day seven of the mission, when the crew was asleep and other spacecraft activities were at a minimum, was examined. During the flight, a 'trimmed-mean' filter was used to produce high quality, low frequency data which was successfully stored aboard the Space Shuttle in the OARE data storage system. Initial review of the data indicated that, although the expected precision was achieved, some equipment problems occurred resulting in uncertain accuracy. An acceleration model which includes aerodynamic, gravity-gradient, and rotational effects was constructed and compared with flight data. Examination of the model with the flight data shows the instrument to be sensitive to all major expected low frequency acceleration phenomena; however, some erratic instrument bias behavior persists in two axes. In these axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by making bias adjustments and slight linear corrections for drift. The other axis does not exhibit these difficulties and gives good agreement with the acceleration model
An annular lithium-drifted germanium detector for studying nuclear reaction gamma-rays
Fabrication and development of annular lithium drifted germanium detector for studying nuclear reaction gamma ray
Asymptotic Level Density of the Elastic Net Self-Organizing Feature Map
Whileas the Kohonen Self Organizing Map shows an asymptotic level density
following a power law with a magnification exponent 2/3, it would be desired to
have an exponent 1 in order to provide optimal mapping in the sense of
information theory. In this paper, we study analytically and numerically the
magnification behaviour of the Elastic Net algorithm as a model for
self-organizing feature maps. In contrast to the Kohonen map the Elastic Net
shows no power law, but for onedimensional maps nevertheless the density
follows an universal magnification law, i.e. depends on the local stimulus
density only and is independent on position and decouples from the stimulus
density at other positions.Comment: 8 pages, 10 figures. Link to publisher under
http://link.springer.de/link/service/series/0558/bibs/2415/24150939.ht
Neutron inelastic scattering investigation of the magnetic excitations in Cu_2Te_2O_5X_2 (X=Br, Cl)
Neutron inelastic scattering investigations have been performed on the spin
tetrahedral system Cu_2Te_2O_5X_2 (X = Cl, Br). We report the observation of
magnetic excitations with a dispersive component in both compounds, associated
with the 3D incommensurate magnetic order that develops below =18.2
K and =11.4 K. The excitation in Cu_2Te_2O_5Cl_2 softens as the
temperature approaches , leaving diffuse quasi-elastic scattering
above the transition temperature. In the bromide, the excitations are present
well above , which might be attributed to the presence of a degree
of low dimensional correlations above in this compound
A controlled experiment for the empirical evaluation of safety analysis techniques for safety-critical software
Context: Today's safety critical systems are increasingly reliant on
software. Software becomes responsible for most of the critical functions of
systems. Many different safety analysis techniques have been developed to
identify hazards of systems. FTA and FMEA are most commonly used by safety
analysts. Recently, STPA has been proposed with the goal to better cope with
complex systems including software. Objective: This research aimed at comparing
quantitatively these three safety analysis techniques with regard to their
effectiveness, applicability, understandability, ease of use and efficiency in
identifying software safety requirements at the system level. Method: We
conducted a controlled experiment with 21 master and bachelor students applying
these three techniques to three safety-critical systems: train door control,
anti-lock braking and traffic collision and avoidance. Results: The results
showed that there is no statistically significant difference between these
techniques in terms of applicability, understandability and ease of use, but a
significant difference in terms of effectiveness and efficiency is obtained.
Conclusion: We conclude that STPA seems to be an effective method to identify
software safety requirements at the system level. In particular, STPA addresses
more different software safety requirements than the traditional techniques FTA
and FMEA, but STPA needs more time to carry out by safety analysts with little
or no prior experience.Comment: 10 pages, 1 figure in Proceedings of the 19th International
Conference on Evaluation and Assessment in Software Engineering (EASE '15).
ACM, 201
Near surface shear wave velocity in Bucharest, Romania
Bucharest, the capital of Romania with nearly 2 1/2 million inhabitants, is endangered by the strong earthquakes in the Vrancea seismic zone. To obtain information on the near surface shear-wave velocity <i>Vs</i> structure and to improve the available microzonations we conducted seismic refraction measurements in two parks of the city. There the shallow <i>Vs</i> structure is determined along five profiles, and the compressional-wave velocity (<i>Vp</i>) structure is obtained along one profile. Although the amount of data collected is limited, they offer a reasonable idea about the seismic velocity distribution in these two locations. This knowledge is useful for a city like Bucharest where seismic velocity information so far is sparse and poorly documented. Using sledge-hammer blows on a steel plate and a 24-channel recording unit, we observe clear shear-wave arrivals in a very noisy environment up to a distance of 300 m from the source. The <i>Vp</i> model along profile 1 can be correlated with the known near surface sedimentary layers. <i>Vp</i> increases from 320 m/s near the surface to 1280 m/s above 55–65 m depth. The <i>Vs</i> models along all five profiles are characterized by low <i>Vs</i> (&lt;350 m/s) in the upper 60 m depth and a maximum <i>Vs</i> of about 1000 m/s below this depth. In the upper 30 m the average <i>Vs</i><sup>30</sup> varies from 210 m/s to 290 m/s. The <i>Vp-Vs</i> relations lead to a high Poisson's ratio of 0.45–0.49 in the upper ~60 m depth, which is an indication for water-saturated clayey sediments. Such ground conditions may severely influence the ground motion during strong Vrancea earthquakes
Wigner flow reveals topological order in quantum phase space dynamics
The behaviour of classical mechanical systems is characterised by their phase
portraits, the collections of their trajectories. Heisenberg's uncertainty
principle precludes the existence of sharply defined trajectories, which is why
traditionally only the time evolution of wave functions is studied in quantum
dynamics. These studies are quite insensitive to the underlying structure of
quantum phase space dynamics. We identify the flow that is the quantum analog
of classical particle flow along phase portrait lines. It reveals hidden
features of quantum dynamics and extra complexity. Being constrained by
conserved flow winding numbers, it also reveals fundamental topological order
in quantum dynamics that has so far gone unnoticed.Comment: 6 pages, 6 figure
Interactive Digital Music: Enhancing Listener Engagement with Commercial Music
Listeners have long been inspired to interact with music and create new representations of popular releases. Vinyl offered many opportunities to reappropriate chart music, from scratching and tempo manipulation to mixing multiple songs together. More recently, artists could engage their audience to interact with their music by offering mix-stems online for experimentation and sharing. With the extended processing power of mobile devices, the opportunities for interactive music are dramatically increasing.
This paper presents research that demonstrates a novel approach to interactive digital music. The research looks at the emergent format of the album app and extends existing paradigms of interactive music playback. The novel album app designed in this research presents a new opportunity for listeners to engage with recorded content by allowing them to explore alternative takes, renditions of a given song in multiple genres, and by allowing direct interaction with embedded mix-stems. The resultant audio remains true to the artist and producer’s studio vision; it is user-influenced, but machine-controlled. The research is conducted in collaboration with artist Daisy and The Dark and was funded by the UK Arts and Humanities Research Council
- …