30,014 research outputs found

    Relativistic Hydrodynamic Cosmological Perturbations

    Get PDF
    Relativistic cosmological perturbation analyses can be made based on several different fundamental gauge conditions. In the pressureless limit the variables in certain gauge conditions show the correct Newtonian behaviors. Considering the general curvature (KK) and the cosmological constant (Λ\Lambda) in the background medium, the perturbed density in the comoving gauge, and the perturbed velocity and the perturbed potential in the zero-shear gauge show the same behavior as the Newtonian ones in general scales. In the first part, we elaborate these Newtonian correspondences. In the second part, using the identified gauge-invariant variables with correct Newtonian correspondences, we present the relativistic results with general pressures in the background and perturbation. We present the general super-sound-horizon scale solutions of the above mentioned variables valid for general KK, Λ\Lambda, and generally evolving equation of state. We show that, for vanishing KK, the super-sound-horizon scale evolution is characterised by a conserved variable which is the perturbed three-space curvature in the comoving gauge. We also present equations for the multi-component hydrodynamic situation and for the rotation and gravitational wave.Comment: 16 pages, no figure, To appear in Gen. Rel. Gra

    Conserved cosmological structures in the one-loop superstring effective action

    Get PDF
    A generic form of low-energy effective action of superstring theories with one-loop quantum correction is well known. Based on this action we derive the complete perturbation equations and general analytic solutions in the cosmological spacetime. Using the solutions we identify conserved quantities characterizing the perturbations: the amplitude of gravitational wave and the perturbed three-space curvature in the uniform-field gauge both in the large-scale limit, and the angular-momentum of rotational perturbation are conserved independently of changing gravity sector. Implications for calculating perturbation spectra generated in the inflation era based on the string action are presented.Comment: 5 pages, no figure, To appear in Phys. Rev.

    Cosmological perturbations in a gravity with quadratic order curvature couplings

    Get PDF
    We present a set of equations describing the evolution of the scalar-type cosmological perturbation in a gravity with general quadratic order curvature coupling terms. Equations are presented in a gauge ready form, thus are ready to implement various temporal gauge conditions depending on the problems. The Ricci-curvature square term leads to a fourth-order differential equation for describing the spacetime fluctuations in a spatially homogeneous and isotropic cosmological background.Comment: 5 pages, no figure, To appear in Phys. Rev.

    A conserved variable in the perturbed hydrodynamic world model

    Full text link
    We introduce a scalar-type perturbation variable Φ\Phi which is conserved in the large-scale limit considering general sign of three-space curvature (KK), the cosmological constant (Λ\Lambda), and time varying equation of state. In a pressureless medium Φ\Phi is {\it exactly conserved} in all scales.Comment: 4 pages, no figure, To appear in Phys. Rev.

    Cosmological Vorticity in a Gravity with Quadratic Order Curvature Couplings

    Get PDF
    We analyse the evolution of the rotational type cosmological perturbation in a gravity with general quadratic order gravitational coupling terms. The result is expressed independently of the generalized nature of the gravity theory, and is simply interpreted as a conservation of the angular momentum.Comment: 5 pages, revtex, no figure

    Unified Analysis of Cosmological Perturbations in Generalized Gravity

    Full text link
    In a class of generalized Einstein's gravity theories we derive the equations and general asymptotic solutions describing the evolution of the perturbed universe in unified forms. Our gravity theory considers general couplings between the scalar field and the scalar curvature in the Lagrangian, thus includes broad classes of generalized gravity theories resulting from recent attempts for the unification. We analyze both the scalar-type mode and the gravitational wave in analogous ways. For both modes the large scale evolutions are characterized by the same conserved quantities which are valid in the Einstein's gravity. This unified and simple treatment is possible due to our proper choice of the gauges, or equivalently gauge invariant combinations.Comment: 4 pages, revtex, no figure

    Travelling waves in hyperbolic chemotaxis equations

    Get PDF
    Mathematical models of bacterial populations are often written as systems of partial differential equations for the densities of bacteria and concentrations of extracellular (signal) chemicals. This approach has been employed since the seminal work of Keller and Segel in the 1970s [Keller and Segel, J. Theor. Biol., 1971]. The system has been shown to permit travelling wave solutions which correspond to travelling band formation in bacterial colonies, yet only under specific criteria, such as a singularity in the chemotactic sensitivity function as the signal approaches zero. Such a singularity generates infinite macroscopic velocities which are biologically unrealistic. In this paper, we formulate a model that takes into consideration relevant details of the intracellular processes while avoiding the singularity in the chemotactic sensitivity. We prove the global existence of solutions and then show the existence of travelling wave solutions both numerically and analytically

    Third-order cosmological perturbations of zero-pressure multi-component fluids: Pure general relativistic nonlinear effects

    Full text link
    Present expansion stage of the universe is believed to be mainly governed by the cosmological constant, collisionless dark matter and baryonic matter. The latter two components are often modeled as zero-pressure fluids. In our previous work we have shown that to the second-order cosmological perturbations, the relativistic equations of the zero-pressure, irrotational, multi-component fluids in a spatially near flat background effectively coincide with the Newtonian equations. As the Newtonian equations only have quadratic order nonlinearity, it is practically interesting to derive the potential third-order perturbation terms in general relativistic treatment which correspond to pure general relativistic corrections. Here, we present pure general relativistic correction terms appearing in the third-order perturbations of the multi-component zero-pressure fluids. We show that, as in a single component situation, the third-order correction terms are quite small (~ 5 x10^{-5} smaller compared with the relativistic/Newtonian second-order terms) due to the weak level anisotropy of the cosmic microwave background radiation. Still, there do exist pure general relativistic correction terms in third-order perturbations which could potentially become important in future development of precision cosmology. We include the cosmological constant in all our analyses.Comment: 20 pages, no figur
    corecore