17,902 research outputs found
Radiative corrections in bumblebee electrodynamics
We investigate some quantum features of the bumblebee electrodynamics in flat
spacetimes. The bumblebee field is a vector field that leads to a spontaneous
Lorentz symmetry breaking. For a smooth quadratic potential, the massless
excitation (Nambu-Goldstone boson) can be identified as the photon, transversal
to the vacuum expectation value of the bumblebee field. Besides, there is a
massive excitation associated with the longitudinal mode and whose presence
leads to instability in the spectrum of the theory. By using the
principal-value prescription, we show that no one-loop radiative corrections to
the mass term is generated. Moreover, the bumblebee self-energy is not
transverse, showing that the propagation of the longitudinal mode can not be
excluded from the effective theory.Comment: Revised version: contains some more elaborated interpretation of the
results. Conclusions improve
Group theory for structural analysis and lattice vibrations in phosphorene systems
Group theory analysis for two-dimensional elemental systems related to
phosphorene is presented, including (i) graphene, silicene, germanene and
stanene, (ii) dependence on the number of layers and (iii) two stacking
arrangements. Departing from the most symmetric graphene space
group, the structures are found to have a group-subgroup relation, and analysis
of the irreducible representations of their lattice vibrations makes it
possible to distinguish between the different allotropes. The analysis can be
used to study the effect of strain, to understand structural phase transitions,
to characterize the number of layers, crystallographic orientation and
nonlinear phenomena.Comment: 24 pages, 3 figure
Quantum critical point in the spin glass-antiferromagnetism competition in Kondo-lattice systems
A theory is proposed to describe the competition among antiferromagnetism
(AF), spin glass (SG) and Kondo effect. The model describes two Kondo
sublattices with an intrasite Kondo interaction strength and an
interlattice quantum Ising interaction in the presence of a transverse field
. The interlattice coupling is a random Gaussian distributed variable
(with average and variance ) while the field is
introduced as a quantum mechanism to produce spin flipping. The path integral
formalism is used to study this fermionic problem where the spin operators are
represented by bilinear combinations of Grassmann fields. The disorder is
treated within the framework of the replica trick. The free energy and the
order parameters of the problem are obtained by using the static ansatz and by
choosing both and to allow, as previously,
a better comparison with the experimental findings.
The results indicate the presence of a SG solution at low and for
temperature ( is the freezing temperature). When is
increased, a mixed phase AF+SG appears, then an AF solution and finally a Kondo
state is obtained for high values of . Moreover, the behaviors of the
freezing and Neel temperatures are also affected by the relationship between
and the transverse field . The first one presents a slight
decrease while the second one decreases towards a Quantum Critical Point (QCP).
The obtained phase diagram has the same sequence as the experimental one for
, if is assumed to increase with , and
in addition, it also shows a qualitative agreement concerning the behavior of
the freezing and the Neel temperatures.Comment: 11 pages, 3 figures, accepted for publication in J. Phys.
Regular string-like braneworlds
In this work, we propose a new class of smooth thick string-like braneworld
in six dimensions. The brane exhibits a varying brane-tension and an
asymptotic behavior. The brane-core geometry is parametrized by the Bulk
cosmological constant, the brane width and by a geometrical deformation
parameter. The source satisfies the dominant energy condition for the
undeformed solution and has an exotic asymptotic regime for the deformed
solution. This scenario provides a normalized massless Kaluza-Klein mode for
the scalar, gravitational and gauge sectors. The near-brane geometry allows
massive resonant modes at the brane for the state and nearby the brane for
.Comment: 14 pages, 12 figures. Some modifications to match the published
version in EPJ
de Sitter relativity: a natural scenario for an evolving Lambda
The dispersion relation of de Sitter special relativity is obtained in a
simple and compact form, which is formally similar to the dispersion relation
of ordinary special relativity. It is manifestly invariant under change of
scale of mass, energy and momentum, and can thus be applied at any energy
scale. When applied to the universe as a whole, the de Sitter special
relativity is found to provide a natural scenario for the existence of an
evolving cosmological term, and agrees in particular with the present-day
observed value. It is furthermore consistent with a conformal cyclic view of
the universe, in which the transition between two consecutive eras occurs
through a conformal invariant spacetime.Comment: V1: 11 pages. V2: Presentation changes, new discussion added, 13
page
de Sitter special relativity
A special relativity based on the de Sitter group is introduced, which is the
theory that might hold up in the presence of a non-vanishing cosmological
constant. Like ordinary special relativity, it retains the quotient character
of spacetime, and a notion of homogeneity. As a consequence, the underlying
spacetime will be a de Sitter spacetime, whose associated kinematics will
differ from that of ordinary special relativity. The corresponding modified
notions of energy and momentum are obtained, and the exact relationship between
them, which is invariant under a re-scaling of the involved quantities,
explicitly exhibited. Since the de Sitter group can be considered a particular
deformation of the Poincar\'e group, this theory turns out to be a specific
kind of deformed (or doubly) special relativity. Some experimental
consequences, as well as the causal structure of spacetime--modified by the
presence of the de Sitter horizon--are briefly discussed.Comment: V2: Some presentation changes; a new section introduced, with a
discussion about possible phenomenological consequences; new references
added; version to be published in Classical and Quantum Gravit
Experimental feedback control of quantum systems using weak measurements
A goal of the emerging field of quantum control is to develop methods for
quantum technologies to function robustly in the presence of noise. Central
issues are the fundamental limitations on the available information about
quantum systems and the disturbance they suffer in the process of measurement.
In the context of a simple quantum control scenario--the stabilization of
non-orthogonal states of a qubit against dephasing--we experimentally explore
the use of weak measurements in feedback control. We find that, despite the
intrinsic difficultly of implementing them, weak measurements allow us to
control the qubit better in practice than is even theoretically possible
without them. Our work shows that these more general quantum measurements can
play an important role for feedback control of quantum systems.Comment: 4 pages, 3 figures. v2 Added extra citation, journal reference and
DOI. Minor typographic correction
- …