5,693 research outputs found
Two-Dimensional Black Holes and Planar General Relativity
The Einstein-Hilbert action with a cosmological term is used to derive a new
action in 1+1 spacetime dimensions. It is shown that the two-dimensional theory
is equivalent to planar symmetry in General Relativity. The two-dimensional
theory admits black holes and free dilatons, and has a structure similar to
two-dimensional string theories. Since by construction these solutions also
solve Einstein's equations, such a theory can bring two-dimensional results
into the four-dimensional real world. In particular the two-dimensional black
hole is also a black hole in General Relativity.Comment: 11 pages, plainte
The Two-Dimensional Analogue of General Relativity
General Relativity in three or more dimensions can be obtained by taking the
limit in the Brans-Dicke theory. In two dimensions
General Relativity is an unacceptable theory. We show that the two-dimensional
closest analogue of General Relativity is a theory that also arises in the
limit of the two-dimensional Brans-Dicke theory.Comment: 8 pages, LaTeX, preprint DF/IST-17.9
Gravitational collapse to toroidal, cylindrical and planar black holes
Gravitational collapse of non-spherical symmetric matter leads inevitably to
non-static external spacetimes. It is shown here that gravitational collapse of
matter with toroidal topology in a toroidal anti-de Sitter background proceeds
to form a toroidal black hole. According to the analytical model presented, the
collapsing matter absorbs energy in the form of radiation (be it scalar,
neutrinos, electromagnetic, or gravitational) from the exterior spacetime. Upon
decompactification of one or two coordinates of the torus one gets collapsing
solutions of cylindrical or planar matter onto black strings or black
membranes, respectively. The results have implications on the hoop conjecture.Comment: 6 pages, Revtex, modifications in the title and in the interpretation
of some results, to appear in Physical Review
The Three-Dimensional BTZ Black Hole as a Cylindrical System in Four-Dimensional General Relativity
It is shown how to transform the three dimensional BTZ black hole into a four
dimensional cylindrical black hole (i.e., black string) in general relativity.
This process is identical to the transformation of a point particle in three
dimensions into a straight cosmic string in four dimensions.Comment: Latex, 9 page
A Quantum Cosmological Model With Static and Dynamic Wormholes
Quantization is performed of a Friedmann-Robertson-Walker universe filled
with a conformally invariant scalar field and a perfect fluid with equation of
state . A well-known discrete set of static quantum wormholes is
shown to exist for radiation (), and a novel continuous set is
found for cosmic strings (), the latter states having throat
radii of any size. In both cases wave-packet solutions to the Wheeler-DeWitt
equation are obtained with all the properties of evolving quantum wormholes. In
the case of a radiation fluid, a detailed analysis of the quantum dynamics is
made in the context of the Bohm-de Broglie interpretation. It is shown that a
repulsive quantum force inversely proportional to the cube of the scale factor
prevents singularities in the quantum domain. For the states considered, there
are no particle horizons either.Comment: LaTex file, 13 pages. To appear in General Relativity and Gravitatio
Quasi-normal modes of toroidal, cylindrical and planar black holes in anti-de Sitter spacetimes: scalar, electromagnetic and gravitational perturbations
We study the quasi-normal modes (QNM) of scalar, electromagnetic and
gravitational perturbations of black holes in general relativity whose horizons
have toroidal, cylindrical or planar topology in an asymptotically anti-de
Sitter (AdS) spacetime. The associated quasinormal frequencies describe the
decay in time of the corresponding test field in the vicinities of the black
hole. In terms of the AdS/CFT conjecture, the inverse of the frequency is a
measure of the dynamical timescale of approach to thermal equilibrium of the
corresponding conformal field theory.Comment: Latex, 16 pages. Minor change
Two-dimensional gravitation and Sine-Gordon-Solitons
Some aspects of two-dimensional gravity coupled to matter fields, especially
to the Sine-Gordon-model are examined. General properties and boundary
conditions of possible soliton-solutions are considered. Analytic
soliton-solutions are discovered and the structure of the induced space-time
geometry is discussed. These solutions have interesting features and may serve
as a starting point for further investigations.Comment: 23 pages, latex, references added, to appear in Phys.Rev.
Thermodynamics of the two-dimensional black hole in the Teitelboim-Jackiw theory
The two-dimensional theory of Teitelboim and Jackiw has constant and negative
curvature. In spite of this, the theory admits a black hole solution with no
singularities. In this work we study the thermodynamics of this black hole
using York's formalism.Comment: 16 pages, Late
Pair creation of higher dimensional black holes on a de Sitter background
We study in detail the quantum process in which a pair of black holes is
created in a higher D-dimensional de Sitter (dS) background. The energy to
materialize and accelerate the pair comes from the positive cosmological
constant. The instantons that describe the process are obtained from the
Tangherlini black hole solutions. Our pair creation rates reduce to the pair
creation rate for Reissner-Nordstrom-dS solutions when D=4. Pair creation of
black holes in the dS background becomes less suppressed when the dimension of
the spacetime increases. The dS space is the only background in which we can
discuss analytically the pair creation process of higher dimensional black
holes, since the C-metric and the Ernst solutions, that describe respectively a
pair accelerated by a string and by an electromagnetic field, are not know yet
in a higher dimensional spacetime.Comment: 10 pages; 1 figure included; RexTeX4. v2: References added. Published
version. v3: Typo in equation (46) fixe
- …