33,273 research outputs found
Some considerations in the fatigue design of launch and spacecraft structures
Metal fatigue, structural fatigue, and strength for launch vehicle and spacecraft structure
Thermal-infrared spectral observations of geologic materials in emission
The thermal-infrared spectra of geologic materials in emission were studied using the prototype Thermal Emission Spectrometer (TES). A variety of of processes and surface modifications that may influence or alter the spectra of primary rock materials were studied. It was confirmed that thermal emission spectra contain the same absorption features as those observed in transmission and reflection spectra. It was confirmed that the TES instrument can be used to obtain relevant spectra for analysis of rock and mineral composition
Capsule system advanced development sterilization program
Capsule system advanced development sterilization program for Mars 71 lande
Analysis of the Gran Desierto, Pinacte Region, Sonora, Mexico, via shuttle imaging radar
The radar discriminability of geolian features and their geological setting as imaged by the SIR-A experiment is examined. The Gran Desierto and Pincate volcanio field of Sonora, Mexico was used to analyze the radar characteristics of the interplay of aeolian features and volcano terrain. The area in the Gran Desierto covers 4000 sq. km. and contains sand dunes of several forms. The Pincate volcanio field covers more than 2.000 sq. km. and consists primarily of basaltic lavas. Margins of the field, especially on the western and northern sides, include several maar and maar-like craters; thus obtaining information on their radar characteristics for comparison with impact craters
What controls the magnetic geometry of M dwarfs?
Context: observations of rapidly rotating M dwarfs show a broad variety of
large-scale magnetic fields encompassing dipole-dominated and multipolar
geometries. In dynamo models, the relative importance of inertia in the force
balance -- quantified by the local Rossby number -- is known to have a strong
impact on the magnetic field geometry. Aims: we aim to assess the relevance of
the local Rossby number in controlling the large-scale magnetic field geometry
of M dwarfs. Methods: we explore the similarities between anelastic dynamo
models in spherical shells and observations of active M-dwarfs, focusing on
field geometries derived from spectropolarimetric studies. To do so, we
construct observation-based quantities aimed to reflect the diagnostic
parameters employed in numerical models. Results: the transition between
dipole-dominated and multipolar large-scale fields in early to mid M dwarfs is
tentatively attributed to a Rossby number threshold. We interpret late M dwarfs
magnetism to result from a dynamo bistability occurring at low Rossby number.
By analogy with numerical models, we expect different amplitudes of
differential rotation on the two dynamo branches.Comment: 4 pages, 4 figures, accepted for publication in A&
Stellar Oscillations Network Group
Stellar Oscillations Network Group (SONG) is an initiative aimed at designing
and building a network of 1m-class telescopes dedicated to asteroseismology and
planet hunting. SONG will have 8 identical telescope nodes each equipped with a
high-resolution spectrograph and an iodine cell for obtaining precision radial
velocities and a CCD camera for guiding and imaging purposes. The main
asteroseismology targets for the network are the brightest (V<6) stars. In
order to improve performance and reduce maintenance costs the instrumentation
will only have very few modes of operation. In this contribution we describe
the motivations for establishing a network, the basic outline of SONG and the
expected performance.Comment: Proc. Vienna Workshop on the Future of Asteroseismology, 20 - 22
September 2006. Comm. in Asteroseismology, Vol. 150, in the pres
Avalanche Behavior in an Absorbing State Oslo Model
Self-organized criticality can be translated into the language of absorbing
state phase transitions. Most models for which this analogy is established have
been investigated for their absorbing state characteristics. In this article,
we transform the self-organized critical Oslo model into an absorbing state
Oslo model and analyze the avalanche behavior. We find that the resulting gap
exponent, D, is consistent with its value in the self-organized critical model.
For the avalanche size exponent, \tau, an analysis of the effect of the
external drive and the boundary conditions is required.Comment: 4 pages, 2 figures, REVTeX 4, submitted to PRE Brief Reports; added
reference and some extra information in V
MCMC Exploration of Supermassive Black Hole Binary Inspirals
The Laser Interferometer Space Antenna will be able to detect the inspiral
and merger of Super Massive Black Hole Binaries (SMBHBs) anywhere in the
Universe. Standard matched filtering techniques can be used to detect and
characterize these systems. Markov Chain Monte Carlo (MCMC) methods are ideally
suited to this and other LISA data analysis problems as they are able to
efficiently handle models with large dimensions. Here we compare the posterior
parameter distributions derived by an MCMC algorithm with the distributions
predicted by the Fisher information matrix. We find excellent agreement for the
extrinsic parameters, while the Fisher matrix slightly overestimates errors in
the intrinsic parameters.Comment: Submitted to CQG as a GWDAW-10 Conference Proceedings, 9 pages, 5
figures, Published Versio
Damping rates and frequency corrections of Kepler LEGACY stars
Linear damping rates and modal frequency corrections of radial oscillation
modes in selected LEGACY main-sequence stars are estimated by means of a
nonadiabatic stability analysis. The selected stellar sample covers stars
observed by Kepler with a large range of surface temperatures and surface
gravities. A nonlocal, time-dependent convection model is perturbed to assess
stability against pulsation modes. The mixing-length parameter is calibrated to
the surface-convection-zone depth of a stellar model obtained from fitting
adiabatic frequencies to the LEGACY observations, and two of the nonlocal
convection parameters are calibrated to the corresponding LEGACY linewidth
measurements. The remaining nonlocal convection parameters in the 1D
calculations are calibrated so as to reproduce profiles of turbulent pressure
and of the anisotropy of the turbulent velocity field of corresponding 3D
hydrodynamical simulations. The atmospheric structure in the 1D stability
analysis adopts a temperature-optical-depth relation derived from 3D
hydrodynamical simulations. Despite the small number of parameters to adjust,
we find good agreement with detailed shapes of both turbulent pressure profiles
and anisotropy profiles with depth, and with damping rates as a function of
frequency. Furthermore, we find the absolute modal frequency corrections,
relative to a standard adiabatic pulsation calculation, to increase with
surface temperature and surface gravity.Comment: accepted for publication in Monthly Notices of the Royal Astronomical
Society (MNRAS); 15 pages, 8 figure
Deeply penetrating banded zonal flows in the solar convection zone
Helioseismic observations have detected small temporal variations of the
rotation rate below the solar surface corresponding to the so-called `torsional
oscillations' known from Doppler measurements of the surface. These appear as
bands of slower and faster than average rotation moving equatorward. Here we
establish, using complementary helioseismic observations over four years from
the GONG network and from the MDI instrument on board SOHO, that the banded
flows are not merely a near-surface phenomenon: rather they extend downward at
least 60 Mm (some 8% of the total solar radius) and thus are evident over a
significant fraction of the nearly 200 Mm depth of the solar convection zone.Comment: 4 pages, 4 figures To be published in ApJ Letters (accepted 3/3/2000
- …