3,401 research outputs found
Lifting a Realistic SO(10) Grand Unified Model to Five Dimensions
It has been shown recently that the problem of rapid proton decay induced by
dimension five operators arising from the exchange of colored Higgsinos can be
simply avoided in grand unified models where a fifth spatial dimension is
compactified on an orbifold. Here we demonstrate that this idea can be used to
solve the Higgsino-mediated proton decay problem in any realistic SO(10) model
by lifting that model to five dimensions. A particular SO(10) model that has
been proposed to explain the pattern of quark and lepton masses and mixings is
used as an example. The idea is to break the SO(10) down to the Pati-Salam
symmetry by the orbifold boundary conditions. The entire four-dimensional
SO(10) model is placed on the physical SO(10) brane except for the gauge
fields, the 45 and a single 10 of Higgs fields, which are placed in the
five-dimensional bulk. The structure of the Higgs superpotential can be
somewhat simplified in doing so, while the Yukawa superpotential and mass
matrices derived from it remain essentially unaltered.Comment: 17 pages, version to be published in Phys. Rev. D with expanded
discussion of the suppression of dim-5 proton decay operator
Lepton Flavor Violation in Supersymmetric SO(10) Grand Unified Models
The study for lepton flavor violation combined with the neutrino oscillation
may provide more information about the lepton flavor structure of the grand
unified theory. In this paper, we study two lepton flavor violation processes,
and , in the context of supersymmetric SO(10)
grand unified models. We find the two processes are both of phenomenological
interest. In particular the latter may be important in some supersymmetric
parameter space where the former is suppressed. Thus, Z-dacay may offer another
chance for looking for lepton flavor violation.Comment: 26 pages, 10 figure
Radiological Risks of Neutron Interrogation of Food
In recent years there has been growing interest in the use of neutron scanning techniques for security. Neutron techniques with a range of energy spectra including thermal, white and fast neutrons have been shown to work in different
scenarios. As international interest in neutron scanning increases the risk of activating cargo, especially foodstuffs must be considered.
There has been a limited amount of research into the activation of foods by neutron beams and we have sought to improve the amount of information available. In this paper we show that for three important metrics; Activity, Ingestion
Dose and Time to Background there is a strong dependence on the food being irradiated and a weak dependence on the energy of irradiation.
Previous studies into activation used results based on irradiation of pharmaceuticals as the basis for research into activation of food. The earlier work reports that 24Na production is the dominant threat which motivated the search for 23(n;\gamma)24Na in highly salted foods. We show that 42K can be more significant than 24Na in low
salt foods such as Bananas and Potatoes
Resonant leptogenesis in a predictive SO(10) grand unified model
An SO(10) grand unified model considered previously by the authors featuring
lopsided down quark and charged lepton mass matrices is successfully predictive
and requires that the lightest two right-handed Majorana neutrinons be nearly
degenerate in order to obtain the LMA solar neutrino solution. Here we use this
model to test its predictions for baryogenesis through resonant-enhanced
leptogenesis. With the conventional type I seesaw mechanism, the best
predictions for baryogenesis appear to fall a factor of three short of the
observed value. However, with a proposed type III seesaw mechanism leading to
three pairs of massive pseudo-Dirac neutrinos, resonant leptogenesis is
decoupled from the neutrino mass and mixing issues with successful baryogenesis
easily obtained.Comment: 22 pages including 1 figure; published version with reference adde
Continuations of the nonlinear Schr\"odinger equation beyond the singularity
We present four continuations of the critical nonlinear \schro equation (NLS)
beyond the singularity: 1) a sub-threshold power continuation, 2) a
shrinking-hole continuation for ring-type solutions, 3) a vanishing
nonlinear-damping continuation, and 4) a complex Ginzburg-Landau (CGL)
continuation. Using asymptotic analysis, we explicitly calculate the limiting
solutions beyond the singularity. These calculations show that for generic
initial data that leads to a loglog collapse, the sub-threshold power limit is
a Bourgain-Wang solution, both before and after the singularity, and the
vanishing nonlinear-damping and CGL limits are a loglog solution before the
singularity, and have an infinite-velocity{\rev{expanding core}} after the
singularity. Our results suggest that all NLS continuations share the universal
feature that after the singularity time , the phase of the singular core
is only determined up to multiplication by . As a result,
interactions between post-collapse beams (filaments) become chaotic. We also
show that when the continuation model leads to a point singularity and
preserves the NLS invariance under the transformation and
, the singular core of the weak solution is symmetric
with respect to . Therefore, the sub-threshold power and
the{\rev{shrinking}}-hole continuations are symmetric with respect to ,
but continuations which are based on perturbations of the NLS equation are
generically asymmetric
The Stark effect in linear potentials
We examine the Stark effect (the second-order shift in the energy spectrum
due to an external constant force) for two 1-dimensional model quantum
mechanical systems described by linear potentials, the so-called quantum
bouncer (defined by V(z) = Fz for z>0 and V(z) infinite for z<0) and the
symmetric linear potential (given by V(z) = F|z|). We show how straightforward
use of the most obvious properties of the Airy function solutions and simple
Taylor expansions give closed form results for the Stark shifts in both
systems. These exact results are then compared to other approximation
techniques, such as perturbation theory and WKB methods. These expressions add
to the small number of closed-form descriptions available for the Stark effect
in model quantum mechanical systems.Comment: 15 pages. To appear in Eur. J. Phys. Needs Institute of Physics
(iopart) style file
Electronic structure and the glass transition in pnictide and chalcogenide semiconductor alloys. Part I: The formation of the -network
Semiconductor glasses exhibit many unique optical and electronic anomalies.
We have put forth a semi-phenomenological scenario (J. Chem. Phys. 132, 044508
(2010)) in which several of these anomalies arise from deep midgap electronic
states residing on high-strain regions intrinsic to the activated transport
above the glass transition. Here we demonstrate at the molecular level how this
scenario is realized in an important class of semiconductor glasses, namely
chalcogen and pnictogen containing alloys. Both the glass itself and the
intrinsic electronic midgap states emerge as a result of the formation of a
network composed of -bonded atomic -orbitals that are only weakly
hybridized. Despite a large number of weak bonds, these -networks are
stable with respect to competing types of bonding, while exhibiting a high
degree of structural degeneracy. The stability is rationalized with the help of
a hereby proposed structural model, by which -networks are
symmetry-broken and distorted versions of a high symmetry structure. The latter
structure exhibits exact octahedral coordination and is fully
covalently-bonded. The present approach provides a microscopic route to a fully
consistent description of the electronic and structural excitations in vitreous
semiconductors.Comment: 22 pages, 17 figures, revised version, final version to appear in J.
Chem. Phy
Strong cloudâcirculation coupling explains weak trade cumulus feedback
Shallow cumulus clouds in the trade-wind regions cool the planet by reflecting solar radiation. The response of trade cumulus clouds to climate change is a key uncertainty in climate projections. Trade cumulus feedbacks in climate models are governed by changes in cloud fraction near cloud base with high-climate-sensitivity models suggesting a strong decrease in cloud-base cloudiness owing to increased lower-tropospheric mixing. Here we show that new observations from the EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field campaign refute this mixing-desiccation hypothesis. We find the dynamical increase of cloudiness through mixing to overwhelm the thermodynamic control through humidity. Because mesoscale motions and the entrainment rate contribute equally to variability in mixing but have opposing effects on humidity, mixing does not desiccate clouds. The magnitude, variability and coupling of mixing and cloudiness differ markedly among climate models and with the EUREC4A observations. Models with large trade cumulus feedbacks tend to exaggerate the dependence of cloudiness on relative humidity as opposed to mixing and also exaggerate variability in cloudiness. Our observational analyses render models with large positive feedbacks implausible and both support and explain at the process scale a weak trade cumulus feedback. Our findings thus refute an important line of evidence for a high climate sensitivit
- âŠ