3,401 research outputs found

    Lifting a Realistic SO(10) Grand Unified Model to Five Dimensions

    Get PDF
    It has been shown recently that the problem of rapid proton decay induced by dimension five operators arising from the exchange of colored Higgsinos can be simply avoided in grand unified models where a fifth spatial dimension is compactified on an orbifold. Here we demonstrate that this idea can be used to solve the Higgsino-mediated proton decay problem in any realistic SO(10) model by lifting that model to five dimensions. A particular SO(10) model that has been proposed to explain the pattern of quark and lepton masses and mixings is used as an example. The idea is to break the SO(10) down to the Pati-Salam symmetry by the orbifold boundary conditions. The entire four-dimensional SO(10) model is placed on the physical SO(10) brane except for the gauge fields, the 45 and a single 10 of Higgs fields, which are placed in the five-dimensional bulk. The structure of the Higgs superpotential can be somewhat simplified in doing so, while the Yukawa superpotential and mass matrices derived from it remain essentially unaltered.Comment: 17 pages, version to be published in Phys. Rev. D with expanded discussion of the suppression of dim-5 proton decay operator

    Lepton Flavor Violation in Supersymmetric SO(10) Grand Unified Models

    Get PDF
    The study for lepton flavor violation combined with the neutrino oscillation may provide more information about the lepton flavor structure of the grand unified theory. In this paper, we study two lepton flavor violation processes, Ï„â†’ÎŒÎł\tau\to \mu\gamma and Z→τΌZ\to \tau\mu, in the context of supersymmetric SO(10) grand unified models. We find the two processes are both of phenomenological interest. In particular the latter may be important in some supersymmetric parameter space where the former is suppressed. Thus, Z-dacay may offer another chance for looking for lepton flavor violation.Comment: 26 pages, 10 figure

    Radiological Risks of Neutron Interrogation of Food

    Get PDF
    In recent years there has been growing interest in the use of neutron scanning techniques for security. Neutron techniques with a range of energy spectra including thermal, white and fast neutrons have been shown to work in different scenarios. As international interest in neutron scanning increases the risk of activating cargo, especially foodstuffs must be considered. There has been a limited amount of research into the activation of foods by neutron beams and we have sought to improve the amount of information available. In this paper we show that for three important metrics; Activity, Ingestion Dose and Time to Background there is a strong dependence on the food being irradiated and a weak dependence on the energy of irradiation. Previous studies into activation used results based on irradiation of pharmaceuticals as the basis for research into activation of food. The earlier work reports that 24Na production is the dominant threat which motivated the search for 23(n;\gamma)24Na in highly salted foods. We show that 42K can be more significant than 24Na in low salt foods such as Bananas and Potatoes

    Resonant leptogenesis in a predictive SO(10) grand unified model

    Full text link
    An SO(10) grand unified model considered previously by the authors featuring lopsided down quark and charged lepton mass matrices is successfully predictive and requires that the lightest two right-handed Majorana neutrinons be nearly degenerate in order to obtain the LMA solar neutrino solution. Here we use this model to test its predictions for baryogenesis through resonant-enhanced leptogenesis. With the conventional type I seesaw mechanism, the best predictions for baryogenesis appear to fall a factor of three short of the observed value. However, with a proposed type III seesaw mechanism leading to three pairs of massive pseudo-Dirac neutrinos, resonant leptogenesis is decoupled from the neutrino mass and mixing issues with successful baryogenesis easily obtained.Comment: 22 pages including 1 figure; published version with reference adde

    Continuations of the nonlinear Schr\"odinger equation beyond the singularity

    Full text link
    We present four continuations of the critical nonlinear \schro equation (NLS) beyond the singularity: 1) a sub-threshold power continuation, 2) a shrinking-hole continuation for ring-type solutions, 3) a vanishing nonlinear-damping continuation, and 4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that leads to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity{\rev{expanding core}} after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time TcT_c, the phase of the singular core is only determined up to multiplication by eiΞe^{i\theta}. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation t→−tt\rightarrow-t and ψ→ψ∗\psi\rightarrow\psi^\ast, the singular core of the weak solution is symmetric with respect to TcT_c. Therefore, the sub-threshold power and the{\rev{shrinking}}-hole continuations are symmetric with respect to TcT_c, but continuations which are based on perturbations of the NLS equation are generically asymmetric

    The Stark effect in linear potentials

    Full text link
    We examine the Stark effect (the second-order shift in the energy spectrum due to an external constant force) for two 1-dimensional model quantum mechanical systems described by linear potentials, the so-called quantum bouncer (defined by V(z) = Fz for z>0 and V(z) infinite for z<0) and the symmetric linear potential (given by V(z) = F|z|). We show how straightforward use of the most obvious properties of the Airy function solutions and simple Taylor expansions give closed form results for the Stark shifts in both systems. These exact results are then compared to other approximation techniques, such as perturbation theory and WKB methods. These expressions add to the small number of closed-form descriptions available for the Stark effect in model quantum mechanical systems.Comment: 15 pages. To appear in Eur. J. Phys. Needs Institute of Physics (iopart) style file

    Electronic structure and the glass transition in pnictide and chalcogenide semiconductor alloys. Part I: The formation of the ppσpp\sigma-network

    Full text link
    Semiconductor glasses exhibit many unique optical and electronic anomalies. We have put forth a semi-phenomenological scenario (J. Chem. Phys. 132, 044508 (2010)) in which several of these anomalies arise from deep midgap electronic states residing on high-strain regions intrinsic to the activated transport above the glass transition. Here we demonstrate at the molecular level how this scenario is realized in an important class of semiconductor glasses, namely chalcogen and pnictogen containing alloys. Both the glass itself and the intrinsic electronic midgap states emerge as a result of the formation of a network composed of σ\sigma-bonded atomic pp-orbitals that are only weakly hybridized. Despite a large number of weak bonds, these ppσpp\sigma-networks are stable with respect to competing types of bonding, while exhibiting a high degree of structural degeneracy. The stability is rationalized with the help of a hereby proposed structural model, by which ppσpp\sigma-networks are symmetry-broken and distorted versions of a high symmetry structure. The latter structure exhibits exact octahedral coordination and is fully covalently-bonded. The present approach provides a microscopic route to a fully consistent description of the electronic and structural excitations in vitreous semiconductors.Comment: 22 pages, 17 figures, revised version, final version to appear in J. Chem. Phy

    Strong cloud–circulation coupling explains weak trade cumulus feedback

    Get PDF
    Shallow cumulus clouds in the trade-wind regions cool the planet by reflecting solar radiation. The response of trade cumulus clouds to climate change is a key uncertainty in climate projections. Trade cumulus feedbacks in climate models are governed by changes in cloud fraction near cloud base with high-climate-sensitivity models suggesting a strong decrease in cloud-base cloudiness owing to increased lower-tropospheric mixing. Here we show that new observations from the EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field campaign refute this mixing-desiccation hypothesis. We find the dynamical increase of cloudiness through mixing to overwhelm the thermodynamic control through humidity. Because mesoscale motions and the entrainment rate contribute equally to variability in mixing but have opposing effects on humidity, mixing does not desiccate clouds. The magnitude, variability and coupling of mixing and cloudiness differ markedly among climate models and with the EUREC4A observations. Models with large trade cumulus feedbacks tend to exaggerate the dependence of cloudiness on relative humidity as opposed to mixing and also exaggerate variability in cloudiness. Our observational analyses render models with large positive feedbacks implausible and both support and explain at the process scale a weak trade cumulus feedback. Our findings thus refute an important line of evidence for a high climate sensitivit
    • 

    corecore