27,171 research outputs found

    Vacuum induced Berry phases in single-mode Jaynes-Cummings models

    Full text link
    Motivated by the work [Phys. Rev. Lett. 89, 220404 (2002)] for detecting the vacuum-induced Berry phases with two-mode Jaynes-Cummings models (JCMs), we show here that, for a parameter-dependent single-mode JCM, certain atom-field states also acquire the photon-number-dependent Berry phases after the parameter slowly changed and eventually returned to its initial value. This geometric effect related to the field quantization still exists, even the filed is kept in its vacuum state. Specifically, a feasible Ramsey interference experiment with cavity quantum electrodynamics (QED) system is designed to detect the vacuum-induced Berry phase.Comment: 10 pages, 4 figures

    Switchable coupling between charge and flux qubits

    Full text link
    We propose a hybrid quantum circuit with both charge and flux qubits connected to a large Josephson junction that gives rise to an effective inter-qubit coupling controlled by the external magnetic flux. This switchable inter-qubit coupling can be used to transfer back and forth an arbitrary superposition state between the charge qubit and the flux qubit working at the optimal point. The proposed hybrid circuit provides a promising quantum memory because the flux qubit at the optimal point can store the tranferred quantum state for a relatively long time.Comment: 5 pages, 1 figur

    Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit

    Full text link
    We analyze the optical selection rules of the microwave-assisted transitions in a flux qubit superconducting quantum circuit (SQC). We show that the parities of the states relevant to the superconducting phase in the SQC are well-defined when the external magnetic flux Φe=Φ0/2\Phi_{e}=\Phi_{0}/2, then the selection rules are same as the ones for the electric-dipole transitions in usual atoms. When Φe≠Φ0/2\Phi_{e}\neq \Phi_{0}/2, the symmetry of the potential of the artificial "atom'' is broken, a so-called Δ\Delta-type "cyclic" three-level atom is formed, where one- and two-photon processes can coexist. We study how the population of these three states can be selectively transferred by adiabatically controlling the electromagnetic field pulses. Different from Λ\Lambda-type atoms, the adiabatic population transfer in our three-level Δ\Delta-atom can be controlled not only by the amplitudes but also by the phases of the pulses
    • …
    corecore