28 research outputs found

    Nonequilibrium phenomena in high Landau levels

    Full text link
    Developments in the physics of 2D electron systems during the last decade have revealed a new class of nonequilibrium phenomena in the presence of a moderately strong magnetic field. The hallmark of these phenomena is magnetoresistance oscillations generated by the external forces that drive the electron system out of equilibrium. The rich set of dramatic phenomena of this kind, discovered in high mobility semiconductor nanostructures, includes, in particular, microwave radiation-induced resistance oscillations and zero-resistance states, as well as Hall field-induced resistance oscillations and associated zero-differential resistance states. We review the experimental manifestations of these phenomena and the unified theoretical framework for describing them in terms of a quantum kinetic equation. The survey contains also a thorough discussion of the magnetotransport properties of 2D electrons in the linear response regime, as well as an outlook on future directions, including related nonequilibrium phenomena in other 2D electron systems.Comment: 60 pages, 41 figure

    Negative conductivity and anomalous screening in two-dimensional electron systems subjected to microwave radiation

    Full text link
    A 2D electron system in a quantized magnetic field can be driven by microwave radiation into a non-equilibrium state with strong magnetooscillations of the dissipative conductivity. We demonstrate that in such system a negative conductivity can coexist with a positive diffusion coefficient. In a finite system, solution of coupled electrostatic and linear transport problems shows that the diffusion can stabilize a state with negative conductivity. Specifically, this happens when the system size is smaller than the absolute value of the non-equilibrium screening length that diverges at the point where the conductivity changes sign. We predict that a negative resistance can be measured in such a state. Further, for a non-zero difference between the work functions of two contacts, we explore the distribution of the electrostatic potential and of the electron density in the sample. We show that in the diffusion-stabilized regime of negative conductivity the system splits into two regions with opposite directions of electric field. This effect is a precursor of the domain structure that has been predicted to emerge spontaneously in the microwave-induced zero-resistance states.Comment: 8 pages, 4 figure

    NOISE AND DIFFUSIVITY OF HOT ELECTRONS IN n-TYPE InSb

    No full text
    On a mesuré et à l'aide de la méthode de Monte-Carlo, on a calculé le bruit des électrons chauds dans n-InSb à la température 77 K et 10 K. On a examiné l'influence de la dispersion des porteurs de charge par les phonons optiques ainsi que par les impuretés ionisées sur les caractéristiques de bruit de 1'antimoniure d'indium.The experimental results and Monte-Carlo calculations of hot electron noise are presented for n-InSb at 77 K and 10 K. The influence of inelastic optical as well as ionized impurity scattering on the noise characteristics is examined
    corecore